Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Fondateur et Conseiller scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et conseiller scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de conseiller spécial et directeur scientifique fondateur d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Collaborateur·rice alumni - McGill
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - Cambridge University
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant
Co-superviseur⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - N/A
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Co-superviseur⋅e :
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Collaborateur·rice de recherche - University of Waterloo
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Collaborateur·rice de recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Postdoctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Visiteur de recherche indépendant - Technical University of Munich
Collaborateur·rice alumni - Polytechnique
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - McGill
Superviseur⋅e principal⋅e :

Publications

Ant Colony Sampling with GFlowNets for Combinatorial Optimization
We present the Generative Flow Ant Colony Sampler (GFACS), a novel meta-heuristic method that hierarchically combines amortized inference an… (voir plus)d parallel stochastic search. Our method first leverages Generative Flow Networks (GFlowNets) to amortize a \emph{multi-modal} prior distribution over combinatorial solution space that encompasses both high-reward and diversified solutions. This prior is iteratively updated via parallel stochastic search in the spirit of Ant Colony Optimization (ACO), leading to the posterior distribution that generates near-optimal solutions. Extensive experiments across seven combinatorial optimization problems demonstrate GFACS's promising performances.
Ant Colony Sampling with GFlowNets for Combinatorial Optimization
We present the Generative Flow Ant Colony Sampler (GFACS), a novel meta-heuristic method that hierarchically combines amortized inference an… (voir plus)d parallel stochastic search. Our method first leverages Generative Flow Networks (GFlowNets) to amortize a \emph{multi-modal} prior distribution over combinatorial solution space that encompasses both high-reward and diversified solutions. This prior is iteratively updated via parallel stochastic search in the spirit of Ant Colony Optimization (ACO), leading to the posterior distribution that generates near-optimal solutions. Extensive experiments across seven combinatorial optimization problems demonstrate GFACS's promising performances.
Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport
Continuous normalizing flows (CNFs) are an attractive generative modeling technique, but they have been held back by limitations in their si… (voir plus)mulation-based maximum likelihood training. We introduce the generalized \textit{conditional flow matching} (CFM) technique, a family of simulation-free training objectives for CNFs. CFM features a stable regression objective like that used to train the stochastic flow in diffusion models but enjoys the efficient inference of deterministic flow models. In contrast to both diffusion models and prior CNF training algorithms, CFM does not require the source distribution to be Gaussian or require evaluation of its density. A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference, as evaluated in our experiments. Furthermore, OT-CFM is the first method to compute dynamic OT in a simulation-free way. Training CNFs with CFM improves results on a variety of conditional and unconditional generation tasks, such as inferring single cell dynamics, unsupervised image translation, and Schrödinger bridge inference.
Integrating Generative and Experimental Platforms or Biomolecular Design
Cheng-Hao Liu
Jason Yim
Soojung Yang
Sidney Lisanza
Francesca-Zhoufan Li
Pranam Chatterjee
Tommi Jaakkola
Regina Barzilay
David Baker
Frances H. Arnold
Tackling Climate Change with Machine Learning: Fostering the Maturity of ML Applications for Climate Change
Shiva Madadkhani
Olivia Mendivil Ramos
Millie Chapman
Jesse Dunietz
Machine learning and information theory concepts towards an AI Mathematician
The current state of the art in artificial intelligence is impressive, especially in terms of mastery of language, but not so much in terms … (voir plus)of mathematical reasoning. What could be missing? Can we learn something useful about that gap from how the brains of mathematicians go about their craft? This essay builds on the idea that current deep learning mostly succeeds at system 1 abilities—which correspond to our intuition and habitual behaviors—but still lacks something important regarding system 2 abilities—which include reasoning and robust uncertainty estimation. It takes an information-theoretical posture to ask questions about what constitutes an interesting mathematical statement, which could guide future work in crafting an AI mathematician. The focus is not on proving a given theorem but on discovering new and interesting conjectures. The central hypothesis is that a desirable body of theorems better summarizes the set of all provable statements, for example, by having a small description length while at the same time being close (in terms of number of derivation steps) to many provable statements.
Machine learning and information theory concepts towards an AI Mathematician
The current state-of-the-art in artificial intelligence is impressive, especially in terms of mastery of language, but not so much in terms … (voir plus)of mathematical reasoning. What could be missing? Can we learn something useful about that gap from how the brains of mathematicians go about their craft? This essay builds on the idea that current deep learning mostly succeeds at system 1 abilities -- which correspond to our intuition and habitual behaviors -- but still lacks something important regarding system 2 abilities -- which include reasoning and robust uncertainty estimation. It takes an information-theoretical posture to ask questions about what constitutes an interesting mathematical statement, which could guide future work in crafting an AI mathematician. The focus is not on proving a given theorem but on discovering new and interesting conjectures. The central hypothesis is that a desirable body of theorems better summarizes the set of all provable statements, for example by having a small description length while at the same time being close (in terms of number of derivation steps) to many provable statements.
Machine learning and information theory concepts towards an AI Mathematician
The current state of the art in artificial intelligence is impressive, especially in terms of mastery of language, but not so much in terms … (voir plus)of mathematical reasoning. What could be missing? Can we learn something useful about that gap from how the brains of mathematicians go about their craft? This essay builds on the idea that current deep learning mostly succeeds at system 1 abilities—which correspond to our intuition and habitual behaviors—but still lacks something important regarding system 2 abilities—which include reasoning and robust uncertainty estimation. It takes an information-theoretical posture to ask questions about what constitutes an interesting mathematical statement, which could guide future work in crafting an AI mathematician. The focus is not on proving a given theorem but on discovering new and interesting conjectures. The central hypothesis is that a desirable body of theorems better summarizes the set of all provable statements, for example, by having a small description length while at the same time being close (in terms of number of derivation steps) to many provable statements.
Efficient Causal Graph Discovery Using Large Language Models
Towards DNA-Encoded Library Generation with GFlowNets
Louis Vaillancourt
Doris Alexandra Schuetz
Moksh J. Jain
Almer M. van der Sloot
Mathieu Bourgey
Anne Marinier
Sources of richness and ineffability for phenomenally conscious states
George Deane
Axel Constant
Jonathan Simon
Distributional GFlowNets with Quantile Flows
Generative Flow Networks (GFlowNets) are a new family of probabilistic samplers where an agent learns a stochastic policy for generating com… (voir plus)plex combinatorial structure through a series of decision-making steps. Despite being inspired from reinforcement learning, the current GFlowNet framework is relatively limited in its applicability and cannot handle stochasticity in the reward function. In this work, we adopt a distributional paradigm for GFlowNets, turning each flow function into a distribution, thus providing more informative learning signals during training. By parameterizing each edge flow through their quantile functions, our proposed \textit{quantile matching} GFlowNet learning algorithm is able to learn a risk-sensitive policy, an essential component for handling scenarios with risk uncertainty. Moreover, we find that the distributional approach can achieve substantial improvement on existing benchmarks compared to prior methods due to our enhanced training algorithm, even in settings with deterministic rewards.