Portrait of Xiaoyin Chen is unavailable

Xiaoyin Chen

PhD - Université de Montréal
Supervisor
Research Topics
Deep Learning
Natural Language Processing
Reasoning

Publications

Self-Evolving Curriculum for LLM Reasoning
Minsu Kim
Alex Pich'e
Nicolas Gontier
Ehsan Kamalloo
Search-Based Correction of Reasoning Chains for Language Models
Minsu Kim
Jean-Pierre R. Falet
Oliver E. Richardson
Moksh J. Jain
Sungjin Ahn
Sungsoo Ahn
Aligning Protein Conformation Ensemble Generation with Physical Feedback
Stephen Zhewen Lu
Aurelie Lozano
Vijil Chenthamarakshan
Payel Das
Protein dynamics play a crucial role in protein biological functions and properties, and their traditional study typically relies on time-co… (see more)nsuming molecular dynamics (MD) simulations conducted in silico. Recent advances in generative modeling, particularly denoising diffusion models, have enabled efficient accurate protein structure prediction and conformation sampling by learning distributions over crystallographic structures. However, effectively integrating physical supervision into these data-driven approaches remains challenging, as standard energy-based objectives often lead to intractable optimization. In this paper, we introduce Energy-based Alignment (EBA), a method that aligns generative models with feedback from physical models, efficiently calibrating them to appropriately balance conformational states based on their energy differences. Experimental results on the MD ensemble benchmark demonstrate that EBA achieves state-of-the-art performance in generating high-quality protein ensembles. By improving the physical plausibility of generated structures, our approach enhances model predictions and holds promise for applications in structural biology and drug discovery.
Search-Based Correction of Reasoning Chains for Language Models
Minsu Kim
Jean-Pierre R. Falet
Oliver E. Richardson
Moksh J. Jain
Sungjin Ahn
Sungsoo Ahn
Self-Evolving Curriculum for LLM Reasoning
Minsu Kim
Alexandre Piché
Nicolas Gontier
Ehsan Kamalloo
HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models
Haebin Seong
Dong Bok Lee
Minki Kang
Dominik Wagner
Juho Lee
Sung Ju Hwang
Safety guard models that detect malicious queries aimed at large language models (LLMs) are essential for ensuring the secure and responsibl… (see more)e deployment of LLMs in real-world applications. However, deploying existing safety guard models with billions of parameters alongside LLMs on mobile devices is impractical due to substantial memory requirements and latency. To reduce this cost, we distill a large teacher safety guard model into a smaller one using a labeled dataset of instruction-response pairs with binary harmfulness labels. Due to the limited diversity of harmful instructions in the existing labeled dataset, naively distilled models tend to underperform compared to larger models. To bridge the gap between small and large models, we propose HarmAug, a simple yet effective data augmentation method that involves jailbreaking an LLM and prompting it to generate harmful instructions. Given a prompt such as,"Make a single harmful instruction prompt that would elicit offensive content", we add an affirmative prefix (e.g.,"I have an idea for a prompt:") to the LLM's response. This encourages the LLM to continue generating the rest of the response, leading to sampling harmful instructions. Another LLM generates a response to the harmful instruction, and the teacher model labels the instruction-response pair. We empirically show that our HarmAug outperforms other relevant baselines. Moreover, a 435-million-parameter safety guard model trained with HarmAug achieves an F1 score comparable to larger models with over 7 billion parameters, and even outperforms them in AUPRC, while operating at less than 25% of their computational cost.
Structure Language Models for Protein Conformation Generation
Efficient Causal Graph Discovery Using Large Language Models