We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Evaluating machine learning-driven intrusion detection systems in IoT: Performance and energy consumption
The combinatorial pricing problem (CPP) is a bilevel problem in which the leader maximizes their revenue by imposing tolls on certain items … (see more)that they can control. Based on the tolls set by the leader, the follower selects a subset of items corresponding to an optimal solution of a combinatorial optimization problem. To accomplish the leader's goal, the tolls need to be sufficiently low to discourage the follower from choosing the items offered by the competitors. In this paper, we derive a single-level reformulation for the CPP by rewriting the follower's problem as a longest path problem using a dynamic programming model, and then taking its dual and applying strong duality. We proceed to solve the reformulation in a dynamic fashion with a cutting plane method. We apply this methodology to 2 distinct dynamic programming models, namely, a novel formulation designated as selection diagram and the well-known decision diagram. We also produce numerical results to evaluate their performances across 3 different specializations of the CPP and a closely related problem that is the knapsack interdiction problem. Our results showcase the potential of the 2 proposed reformulations over the natural value function approach, expanding the set of tools to solve combinatorial bilevel programs.
The availability of performant pre-trained models has led to a proliferation of fine-tuned expert models that are specialized to a particula… (see more)r domain or task. Model MoErging methods aim to recycle expert models to create an aggregate system with improved performance or generalization. A key component of MoErging methods is the creation of a router that decides which expert model(s) to use for a particular input or application. The promise, effectiveness, and large design space of MoErging has spurred the development of many new methods over the past few years. This rapid pace of development has made it challenging to compare different MoErging methods, which are rarely compared to one another and are often validated in different experimental setups. To remedy such gaps, we present a comprehensive survey of MoErging methods that includes a novel taxonomy for cataloging key design choices and clarifying suitable applications for each method. Apart from surveying MoErging research, we inventory software tools and applications that make use of MoErging. We additionally discuss related fields of study such as model merging, multitask learning, and mixture-of-experts models. Taken as a whole, our survey provides a unified overview of existing MoErging methods and creates a solid foundation for future work in this burgeoning field.
With the growing pervasiveness of pre-trained protein large language models (pLLMs), pLLM-based methods are increasingly being put forward f… (see more)or the protein-protein interaction (PPI) inference task. Here, we identify and confirm that existing pre-trained pLLMs are a source of data leakage for the downstream PPI task. We characterize the extent of the data leakage problem by training and comparing small and efficient pLLMs on a dataset that controls for data leakage (“strict”) with one that does not (“non-strict”). While data leakage from pre-trained pLLMs cause measurable inflation of testing scores, we find that this does not necessarily extend to other, non-paired biological tasks such as protein keyword annotation. Further, we find no connection between the context-lengths of pLLMs and the performance of pLLM-based PPI inference methods on proteins with sequence lengths that surpass it. Furthermore, we show that pLLM-based and non-pLLM-based models fail to generalize in tasks such as prediction of the human-SARS-CoV-2 PPIs or the effect of point mutations on binding-affinities. This study demonstrates the importance of extending existing protocols for the evaluation of pLLM-based models applied to paired biological datasets and identifies areas of weakness of current pLLM models.