NLP in the era of generative AI, cognitive sciences, and societal transformation
Join us at Mila in October for a three-day workshop to explore the transformative potential of language technologies and their implications for society.
This program is designed to provide decision-makers, policymakers and professional working in policy with a foundational understanding of AI technology.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Development of Error Passing Network for Optimizing the Prediction of VO$_2$ peak in Childhood Acute Leukemia Survivors
Approximately two-thirds of survivors of childhood acute lymphoblastic leukemia (ALL) cancer develop late adverse effects post-treatment. Pr… (see more)ior studies explored prediction models for personalized follow-up, but none integrated the usage of neural networks to date. In this work, we propose the Error Passing Network (EPN), a graph-based method that leverages relationships between samples to propagate residuals and adjust predictions of any machine learning model. We tested our approach to estimate patients’ \vo peak, a reliable indicator of their cardiac health. We used the EPN in conjunction with several baseline models and observed up to 12.16% improvement in the mean average percentage error compared to the last established equation predicting \vo peak in childhood ALL survivors. Along with this performance improvement, our final model is more efficient considering that it relies only on clinical variables that can be self-reported by patients, therefore removing the previous need of executing a resource-consuming physical test.
2024-07-24
Proceedings of the fifth Conference on Health, Inference, and Learning (published)
Background:
Recently, machine and deep learning (ML/DL) algorithms have been increasingly adopted in many software systems. Due to their in… (see more)ductive nature, ensuring the quality of these systems remains a significant challenge for the research community. Traditionally, software systems were constructed deductively, by writing explicit rules that govern the behavior of the system as program code. However, ML/DL systems infer rules from training data i.e., they are generated inductively). Recent research in ML/DL quality assurance has adapted concepts from traditional software testing, such as mutation testing, to improve reliability. However, it is unclear if these proposed testing techniques are adopted in practice, or if new testing strategies have emerged from real-world ML deployments. There is little empirical evidence about the testing strategies.
Aims:
To fill this gap, we perform the first fine-grained empirical study on ML testing in the wild to identify the ML properties being tested, the testing strategies, and their implementation throughout the ML workflow.
Method:
We conducted a mixed-methods study to understand ML software testing practices. We analyzed test files and cases from 11 open-source ML/DL projects on GitHub. Using open coding, we manually examined the testing strategies, tested ML properties, and implemented testing methods to understand their practical application in building and releasing ML/DL software systems.
Results:
Our findings reveal several key insights: 1.) The most common testing strategies, accounting for less than 40%, are Grey-box and White-box methods, such as
Negative Testing
,
Oracle Approximation
, and
Statistical Testing
. 2.) A wide range of
\(17\)
ML properties are tested, out of which only 20% to 30% are frequently tested, including
Consistency
,
Correctness
, and
Efficiency
. 3.)
Bias and Fairness
is more tested in Recommendation (6%) and CV (3.9%) systems, while
Security & Privacy
is tested in CV (2%), Application Platforms (0.9%), and NLP (0.5%). 4.) We identified 13 types of testing methods, such as
Unit Testing
,
Input Testing
, and
Model Testing
.
Conclusions:
This study sheds light on the current adoption of software testing techniques and highlights gaps and limitations in existing ML testing practices.
2024-07-24
ACM Transactions on Software Engineering and Methodology (published)
Bayesian inference for inverse problems hinges critically on the choice of priors. In the absence of specific prior information, population-… (see more)level distributions can serve as effective priors for parameters of interest. With the advent of machine learning, the use of data-driven population-level distributions (encoded, e.g., in a trained deep neural network) as priors is emerging as an appealing alternative to simple parametric priors in a variety of inverse problems. However, in many astrophysical applications, it is often difficult or even impossible to acquire independent and identically distributed samples from the underlying data-generating process of interest to train these models. In these cases, corrupted data or a surrogate, e.g. a simulator, is often used to produce training samples, meaning that there is a risk of obtaining misspecified priors. This, in turn, can bias the inferred posteriors in ways that are difficult to quantify, which limits the potential applicability of these models in real-world scenarios. In this work, we propose addressing this issue by iteratively updating the population-level distributions by retraining the model with posterior samples from different sets of observations and showcase the potential of this method on the problem of background image reconstruction in strong gravitational lensing when score-based models are used as data-driven priors. We show that starting from a misspecified prior distribution, the updated distribution becomes progressively closer to the underlying population-level distribution, and the resulting posterior samples exhibit reduced bias after several updates.
Fine-grained understanding of objects, attributes, and relationships between objects is crucial for visual-language models (VLMs). Existing … (see more)benchmarks primarily focus on evaluating VLMs' capability to distinguish between two very similar \textit{captions} given an image. In this paper, we introduce a new, challenging benchmark termed \textbf{Vis}ual \textbf{Min}imal-Change Understanding (VisMin), which requires models to predict the correct image-caption match given two images and two captions. The image pair and caption pair contain minimal changes, i.e., only one aspect changes at a time from among the following: \textit{object}, \textit{attribute}, \textit{count}, and \textit{spatial relation}. These changes test the models' understanding of objects, attributes (such as color, material, shape), counts, and spatial relationships between objects. We built an automatic framework using large language models and diffusion models, followed by a rigorous 4-step verification process by human annotators. Empirical experiments reveal that current VLMs exhibit notable deficiencies in understanding spatial relationships and counting abilities. We also generate a large-scale training dataset to finetune CLIP and Idefics2, showing significant improvements in fine-grained understanding across benchmarks and in CLIP's general image-text alignment. We release all resources, including the benchmark, training data, and finetuned model checkpoints, at https://vismin.net/.
While finetuning language models from pairwise preferences has proven remarkably effective, the underspecified nature of natural language pr… (see more)esents critical challenges. Direct preference feedback is uninterpretable, difficult to provide where multidimensional criteria may apply, and often inconsistent, either because it is based on incomplete instructions or provided by diverse principals. To address these challenges, we consider the two-step preference modeling procedure that first resolves the under-specification by selecting a context, and then evaluates preference with respect to the chosen context. We decompose reward modeling error according to these two steps, which suggests that supervising context in addition to context-specific preference may be a viable approach to aligning models with diverse human preferences. For this to work, the ability of models to evaluate context-specific preference is critical. To this end, we contribute context-conditioned preference datasets and accompanying experiments that investigate the ability of language models to evaluate context-specific preference. We use our datasets to (1) show that existing preference models benefit from, but fail to fully consider, added context, (2) finetune a context-aware reward model with context-specific performance exceeding that of GPT-4 and Llama 3 70B on tested datasets, and (3) investigate the value of context-aware preference modeling.
AI progress is creating a growing range of risks and opportunities, but it is often unclear how they should be navigated. In many cases, the… (see more) barriers and uncertainties faced are at least partly technical. Technical AI governance, referring to technical analysis and tools for supporting the effective governance of AI, seeks to address such challenges. It can help to (a) identify areas where intervention is needed, (b) identify and assess the efficacy of potential governance actions, and (c) enhance governance options by designing mechanisms for enforcement, incentivization, or compliance. In this paper, we explain what technical AI governance is, why it is important, and present a taxonomy and incomplete catalog of its open problems. This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
We introduce Temporal Residual Jacobians as a novel representation to enable data-driven motion transfer. Our approach does not assume acces… (see more)s to any rigging or intermediate shape keyframes, produces geometrically and temporally consistent motions, and can be used to transfer long motion sequences. Central to our approach are two coupled neural networks that individually predict local geometric and temporal changes that are subsequently integrated, spatially and temporally, to produce the final animated meshes. The two networks are jointly trained, complement each other in producing spatial and temporal signals, and are supervised directly with 3D positional information. During inference, in the absence of keyframes, our method essentially solves a motion extrapolation problem. We test our setup on diverse meshes (synthetic and scanned shapes) to demonstrate its superiority in generating realistic and natural-looking animations on unseen body shapes against SoTA alternatives. Supplemental video and code are available at https://temporaljacobians.github.io/ .
Solving Constrained Horn Clauses (CHCs) is a fundamental challenge behind a wide range of verification and analysis tasks. Data-driven appro… (see more)aches show great promise in improving CHC solving without the painstaking manual effort of creating and tuning various heuristics. However, a large performance gap exists between data-driven CHC solvers and symbolic reasoning-based solvers. In this work, we develop a simple but effective framework,"Chronosymbolic Learning", which unifies symbolic information and numerical data points to solve a CHC system efficiently. We also present a simple instance of Chronosymbolic Learning with a data-driven learner and a BMC-styled reasoner. Despite its great simplicity, experimental results show the efficacy and robustness of our tool. It outperforms state-of-the-art CHC solvers on a dataset consisting of 288 benchmarks, including many instances with non-linear integer arithmetics.