This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
The majority of signal data captured in the real world uses numerous sensors with different resolutions. In practice, most deep learning arc… (see more)hitectures are fixed-resolution; they consider a single resolution at training and inference time. This is convenient to implement but fails to fully take advantage of the diverse signal data that exists. In contrast, other deep learning architectures are adaptive-resolution; they directly allow various resolutions to be processed at training and inference time. This provides computational adaptivity but either sacrifices robustness or compatibility with mainstream layers, which hinders their use. In this work, we introduce Adaptive Resolution Residual Networks (ARRNs) to surpass this tradeoff. We construct ARRNs from Laplacian residuals, which serve as generic adaptive-resolution adapters for fixed-resolution layers. We use smoothing filters within Laplacian residuals to linearly separate input signals over a series of resolution steps. We can thereby skip Laplacian residuals to cast high-resolution ARRNs into low-resolution ARRNs that are computationally cheaper yet numerically identical over low-resolution signals. We guarantee this result when Laplacian residuals are implemented with perfect smoothing kernels. We complement this novel component with Laplacian dropout, which randomly omits Laplacian residuals during training. This regularizes for robustness to a distribution of lower resolutions. This also regularizes for numerical errors that may occur when Laplacian residuals are implemented with approximate smoothing kernels. We provide a solid grounding for the advantageous properties of ARRNs through a theoretical analysis based on neural operators, and empirically show that ARRNs embrace the challenge posed by diverse resolutions with computational adaptivity, robustness, and compatibility with mainstream layers.
We introduce Adaptive Resolution Residual Networks (ARRNs), a form of neural operator that enables the creation of networks for signal-based… (see more) tasks that can be rediscretized to suit any signal resolution. ARRNs are composed of a chain of Laplacian residuals that each contain ordinary layers, which do not need to be rediscretizable for the whole network to be rediscretizable. ARRNs have the property of requiring a lower number of Laplacian residuals for exact evaluation on lower-resolution signals, which greatly reduces computational cost. ARRNs also implement Laplacian dropout, which encourages networks to become robust to low-bandwidth signals. ARRNs can thus be trained once at high-resolution and then be rediscretized on the fly at a suitable resolution with great robustness.