Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
The majority of signal data captured in the real world uses numerous sensors with different resolutions. In practice, most deep learning arc… (voir plus)hitectures are fixed-resolution; they consider a single resolution at training and inference time. This is convenient to implement but fails to fully take advantage of the diverse signal data that exists. In contrast, other deep learning architectures are adaptive-resolution; they directly allow various resolutions to be processed at training and inference time. This provides computational adaptivity but either sacrifices robustness or compatibility with mainstream layers, which hinders their use. In this work, we introduce Adaptive Resolution Residual Networks (ARRNs) to surpass this tradeoff. We construct ARRNs from Laplacian residuals, which serve as generic adaptive-resolution adapters for fixed-resolution layers. We use smoothing filters within Laplacian residuals to linearly separate input signals over a series of resolution steps. We can thereby skip Laplacian residuals to cast high-resolution ARRNs into low-resolution ARRNs that are computationally cheaper yet numerically identical over low-resolution signals. We guarantee this result when Laplacian residuals are implemented with perfect smoothing kernels. We complement this novel component with Laplacian dropout, which randomly omits Laplacian residuals during training. This regularizes for robustness to a distribution of lower resolutions. This also regularizes for numerical errors that may occur when Laplacian residuals are implemented with approximate smoothing kernels. We provide a solid grounding for the advantageous properties of ARRNs through a theoretical analysis based on neural operators, and empirically show that ARRNs embrace the challenge posed by diverse resolutions with computational adaptivity, robustness, and compatibility with mainstream layers.
We introduce Adaptive Resolution Residual Networks (ARRNs), a form of neural operator that enables the creation of networks for signal-based… (voir plus) tasks that can be rediscretized to suit any signal resolution. ARRNs are composed of a chain of Laplacian residuals that each contain ordinary layers, which do not need to be rediscretizable for the whole network to be rediscretizable. ARRNs have the property of requiring a lower number of Laplacian residuals for exact evaluation on lower-resolution signals, which greatly reduces computational cost. ARRNs also implement Laplacian dropout, which encourages networks to become robust to low-bandwidth signals. ARRNs can thus be trained once at high-resolution and then be rediscretized on the fly at a suitable resolution with great robustness.