Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relations les responsables des politiques avec un groupe d’expert·e·s en IA pour discuter librement de leurs défis en matière d'IA et de politique.
Joignez-vous à nous le 17 avril pour notre conférence annuelle d'une journée sur la recherche en IA, mettant en vedette les chercheur·euse·s de Mila et des conférencier·ère·s de renom, au profit de Centraide du Grand Montréal.
Développement du groupe d'experts de l'ONU sur l'IA
Mila a récemment réuni des expert·e·s de renom pour discuter de la création d’un groupe indépendant sur l’IA pour l’ONU. Ce document propose des recommandations clés pour assurer son indépendance et sa légitimité.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Evaluating machine learning-driven intrusion detection systems in IoT: Performance and energy consumption
Background Alcohol related hepatitis is responsible for high morbidity and mortality, but little is known about the management of patients w… (voir plus)ith hepatitis specifically in intensive care units (ICU). Methods Retrospective study including patients with alcohol related hepatitis hospitalized in 9 French ICUs (2006–2017). Alcohol related hepatitis was defined histologically or by an association of clinical and biological criteria according to current guidelines. Results 187 patients (median age: 53 [43–60]; male: 69%) were included. A liver biopsy was performed in 51% of cases. Patients were admitted for impaired consciousness (71%), sepsis (64%), shock (44%), respiratory failure (37%). At admission, median SOFA and MELD scores were 10 [7–13] and 31 [26–40] respectively. 63% of patients received invasive mechanical ventilation, 62% vasopressors, and 36% renal replacement therapy. 66% of patients received corticosteroids, and liver transplantation was performed in 16 patients (8.5%). ICU and in-hospital mortality were 37% and 53% respectively. By multivariate analysis, ICU mortality was associated with SOFA score (without total bilirubin) (SHR 1.08 [1.02–1.14] per one-point increase), arterial lactate (SHR 1.08 [1.03–1.13] per 1 mmol/L) and MELD score (SHR 1.09 [1.04–1.14] per 1 point), while employment was associated with increased survival (HR 0.49 [0.28–0.86]). After propensity score weighting, the use of corticosteroids did not affect ICU mortality in the overall population but had a beneficial effect in the subgroup of patients with histological proof. Patient prognosis was also better in responders assessed by Lille score at day 7 (OR 6.67 [2.44–20.15], p 0.001). Conclusion Alcohol related hepatitis is a severe condition leading to high mortality in ICU patients. Severity of organ failure
AI progress is creating a growing range of risks and opportunities, but it is often unclear how they should be navigated. In many cases, the… (voir plus) barriers and uncertainties faced are at least partly technical. Technical AI governance, referring to technical analysis and tools for supporting the effective governance of AI, seeks to address such challenges. It can help to (a) identify areas where intervention is needed, (b) identify and assess the efficacy of potential governance actions, and (c) enhance governance options by designing mechanisms for enforcement, incentivization, or compliance. In this paper, we explain what technical AI governance is, why it is important, and present a taxonomy and incomplete catalog of its open problems. This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.