Adaptation, Comparison and Practical Implementation of Fairness Schemes in Kidney Exchange Programs
In Kidney Exchange Programs (KEPs), each participating patient is registered together with an incompatible donor. Donors without an incompat… (voir plus)ible patient can also register. Then, KEPs typically maximize overall patient benefit through donor exchanges. This aggregation of benefits calls into question potential individual patient disparities in terms of access to transplantation in KEPs. Considering solely this utilitarian objective may become an issue in the case where multiple exchange plans are optimal or near-optimal. In fact, current KEP policies are all-or-nothing, meaning that only one exchange plan is determined. Each patient is either selected or not as part of that unique solution. In this work, we seek instead to find a policy that contemplates the probability of patients of being in a solution. To guide the determination of our policy, we adapt popular fairness schemes to KEPs to balance the usual approach of maximizing the utilitarian objective. Different combinations of fairness and utilitarian objectives are modelled as conic programs with an exponential number of variables. We propose a column generation approach to solve them effectively in practice. Finally, we make an extensive comparison of the different schemes in terms of the balance of utility and fairness score, and validate the scalability of our methodology for benchmark instances from the literature.
Harnessing agent-based frameworks in CellAgentChat to unravel cell-cell interactions from single-cell and spatial transcriptomics
Vishvak Raghavan
Yumin Zheng
Model approximation in MDPs with unbounded per-step cost
Berk Bozkurt
Ashutosh Nayyar
Yi Ouyang
We consider the problem of designing a control policy for an infinite-horizon discounted cost Markov decision process …
Modulation of leg trajectory by transcranial magnetic stimulation during walking
H. Bourgeois
Rose Guay-Hottin
El-Mehdi Meftah
Marina Martinez
D. Barthélemy
Self-Predictive Representations for Combinatorial Generalization in Behavioral Cloning
Daniel Lawson
Adriana Hugessen
Charlotte Cloutier
Behavioral cloning (BC) methods trained with supervised learning (SL) are an effective way to learn policies from human demonstrations in do… (voir plus)mains like robotics. Goal-conditioning these policies enables a single generalist policy to capture diverse behaviors contained within an offline dataset. While goal-conditioned behavior cloning (GCBC) methods can perform well on in-distribution training tasks, they do not necessarily generalize zero-shot to tasks that require conditioning on novel state-goal pairs, i.e. combinatorial generalization. In part, this limitation can be attributed to a lack of temporal consistency in the state representation learned by BC; if temporally related states are encoded to similar latent representations, then the out-of-distribution gap for novel state-goal pairs would be reduced. Hence, encouraging this temporal consistency in the representation space should facilitate combinatorial generalization. Successor representations, which encode the distribution of future states visited from the current state, nicely encapsulate this property. However, previous methods for learning successor representations have relied on contrastive samples, temporal-difference (TD) learning, or both. In this work, we propose a simple yet effective representation learning objective,
Landscape of Thoughts: Visualizing the Reasoning Process of Large Language Models
Zhanke Zhou
Zhaocheng Zhu
Xuan Li
Mikhail Galkin
Xiao Feng
Sanmi Koyejo
Bo Han
Prompt learning with bounding box constraints for medical image segmentation.
Mélanie Gaillochet
Mehrdad Noori
Sahar Dastani
Christian Desrosiers
Pixel-wise annotations are notoriously labourious and costly to obtain in the medical domain. To mitigate this burden, weakly supervised app… (voir plus)roaches based on bounding box annotations-much easier to acquire-offer a practical alternative. Vision foundation models have recently shown noteworthy segmentation performance when provided with prompts such as points or bounding boxes. Prompt learning exploits these models by adapting them to downstream tasks and automating segmentation, thereby reducing user intervention. However, existing prompt learning approaches depend on fully annotated segmentation masks. This paper proposes a novel framework that combines the representational power of foundation models with the annotation efficiency of weakly supervised segmentation. More specifically, our approach automates prompt generation for foundation models using only bounding box annotations. Our proposed optimization scheme integrates multiple constraints derived from box annotations with pseudo-labels generated by the prompted foundation model. Extensive experiments across multi-modal datasets reveal that our weakly supervised method achieves an average Dice score of 84.90% in a limited data setting, outperforming existing fully-supervised and weakly-supervised approaches. The code will be available upon acceptance
Spatially and non-spatially tuned hippocampal neurons are linear perceptual and nonlinear memory encoders
Maxime Daigle
Kaicheng Yan
Benjamin Corrigan
Roberto Gulli
Julio Martinez-Trujillo
Learning to combine top-down context and feed-forward representations under ambiguity with apical and basal dendrites
Nizar Islah
Guillaume Etter
Mashbayar Tugsbayar
Busra Tugce Gurbuz
Multi-Agent Matrix Games with Individual learners: How Exploration-Exploitation Strategies Impact the Emergence of Coordination
Julien Armand
Tommy Chien-Hsuan Lin
Maxime Heuillet
Coordination between independent learning agents in a multi-agent environment is an important problem where AI systems may impact each other… (voir plus)s learning process. In this paper, we study how individual agents converge to optimal equilibrium in multi-agent where coordination is necessary to achieve optimality. Specifically, we cover the case of coordination to maximize every individual payoffs and coordination to maximize the collective payoff (cooperation). We study the emergence of such coordination behaviours in two-players matrix games with unknown payoff matrices and noisy bandit feedback. We consider five different environments along with widely used deterministic and stochastic bandit strategies. We study how different learning strategies and observation noise influence convergence to the optimal equilibrium. Our results indicate that coordination often emerge more easily from interactions between deterministic agents, especially when they follow the same learning behaviour. However, stochastic learning strategies appear to be more robust in the presence of many optimal joint actions. Overall, noisy observations often help stabilizing learning behaviours.
Opening the Scope of Openness in AI
Tamara Paris
A Survey of State Representation Learning for Deep Reinforcement Learning
Ayoub Echchahed
Representation learning methods are an important tool for addressing the challenges posed by complex observations spaces in sequential decis… (voir plus)ion making problems. Recently, many methods have used a wide variety of types of approaches for learning meaningful state representations in reinforcement learning, allowing better sample efficiency, generalization, and performance. This survey aims to provide a broad categorization of these methods within a model-free online setting, exploring how they tackle the learning of state representations differently. We categorize the methods into six main classes, detailing their mechanisms, benefits, and limitations. Through this taxonomy, our aim is to enhance the understanding of this field and provide a guide for new researchers. We also discuss techniques for assessing the quality of representations, and detail relevant future directions.