Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
The role of Large Language Models in IoT security: A systematic review of advances, challenges, and opportunities
High IL1R1 expression predicts poor survival and benefit from stem cell transplant in intermediate-risk acute myeloid leukemia from the Leucegene cohort
Rail is a cost-effective and relatively low-emission mode for transporting intermodal containers over long distances. This paper addresses t… (voir plus)actical planning of intermodal railroad operations by introducing a new problem that simultaneously considers three consolidation processes and the management of a heterogeneous railcar fleet. We model the problem with a scheduled service network design with resource management (SSND-RM) formulation, expressed as an integer linear program. While such formulations are challenging to solve at scale, we demonstrate that our problem can be tackled with a general-purpose solver when provided with high-quality warm-start solutions. To this end, we design a construction heuristic inspired by a relax-and-fix procedure. We evaluate the methodology on realistic, large-scale instances from our industrial partner, the Canadian National Railway Company: a North American Class I railroad. The computational experiments show that the proposed approach efficiently solves practically relevant instances, and that solutions to the SSND-RM formulation yield substantially more accurate capacity estimations compared to those obtained from simpler baseline models. Managerial insights from our study highlight that ignoring railcar fleet management or container loading constraints can lead to a severe underestimation of required capacity, which may result in costly operational inefficiencies. Furthermore, our results show that the use of multi-platform railcars improves overall capacity utilization and benefits the network, even if they can locally lead to less efficient loading as measured by terminal-level slot utilization performance indicators.
Designing drug molecules that bind effectively to target proteins while maintaining desired pharmacological properties remains a fundamental… (voir plus) challenge in drug discovery. Current approaches struggle to simultaneously control molecular topology and 3D geometry, often requiring expensive retraining for new design objectives. We propose a multi-modal variational flow framework that addresses these limitations by integrating a 2D topology encoder with a 3D geometry generator. Our architecture encodes molecular graphs into a learned latent distribution via junction tree representations, then employs normalizing flows to autoregressively generate atoms in 3D space conditioned on the protein binding site. This design enables zero-shot controllability: by manipulating the latent prior distribution, we can generate molecules with specific substructures or optimized properties without model retraining. Experiments on the CrossDocked benchmark show that our model achieves 31.1% high-affinity rate, substantially outperforming existing methods, while maintaining superior drug-likeness and structural diversity. Our framework opens new possibilities for on-demand molecular design, allowing medicinal chemists to rapidly explore chemical space with precise control over both structural motifs and physicochemical properties.
Machine unlearning refers to removing the influence of a specified subset of training data from a machine learning model, efficiently, after… (voir plus) it has already been trained. This is important for key applications, including making the model more accurate by removing outdated, mislabeled, or poisoned data. In this work, we study localized unlearning, where the unlearning algorithm operates on a (small) identified subset of parameters. Drawing inspiration from the memorization literature, we propose an improved localization strategy that yields strong results when paired with existing unlearning algorithms. We also propose a new unlearning algorithm, Deletion by Example Localization (DEL), that resets the parameters deemed-to-be most critical according to our localization strategy, and then finetunes them. Our extensive experiments on different datasets, forget sets and metrics reveal that DEL sets a new state-of-the-art for unlearning metrics, against both localized and full-parameter methods, while modifying a small subset of parameters, and outperforms the state-of-the-art localized unlearning in terms of test accuracy too.