Portrait of Eugene Belilovsky is unavailable

Eugene Belilovsky

Associate Academic Member
Assistant Professor, Concordia University, Department of Computer Science and Software Engineering
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Deep Learning
Distributed Systems
Optimization

Biography

Eugene Belilovsky is an assistant professor in the Department of Computer Science and Software Engineering at Concordia University.

He is also an associate academic member of Mila – Quebec Artificial Intelligence Institute and an adjunct professor at Université de Montréal.

Belilovsky’s research specialties lie in computer vision and deep learning. His current interests include continual learning and few-shot learning, along with applications of these aspects at the intersection of computer vision and language processing.

Current Students

PhD - Concordia University
Master's Research - Concordia University
Co-supervisor :
PhD - Concordia University
Co-supervisor :
Master's Research - Concordia University
Co-supervisor :
PhD - Concordia University
Co-supervisor :
Master's Research - Concordia University
Co-supervisor :
PhD - Concordia University
PhD - Concordia University
Postdoctorate - Concordia University
Co-supervisor :
PhD - Concordia University
Co-supervisor :
PhD - Concordia University
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Principal supervisor :
PhD - Concordia University
Co-supervisor :

Publications

Continual Pre-training of MoEs: How robust is your router?
Zain Sarwar
Ashwinee Panda
Anirban Das
Shi-Xiong Zhang
Stephen Rawls
Sambit Sahu
Continual Pre-training of MoEs: How robust is your router?
Zain Sarwar
Ashwinee Panda
Anirban Das
Shi-Xiong Zhang
Stephen Rawls
Sambit Sahu
Sparsely-activated Mixture of Experts (MoE) transformers are promising architectures for foundation models. Compared to dense transformers t… (see more)hat require the same amount of floating-point operations (FLOPs) per forward pass, MoEs benefit from improved sample efficiency at training time and achieve much stronger performance. Many closed-source and open-source frontier language models have thus adopted an MoE architecture. Naturally, practitioners will want to extend the capabilities of these models with large amounts of newly collected data without completely re-training them. Prior work has shown that a simple combination of replay, learning rate re-warming, and re-decaying can enable the continual pre-training (CPT) of dense decoder-only transformers with minimal performance degradation compared to full re-training. In the case of decoder-only MoE transformers, however, it is unclear how the routing algorithm will impact continual pre-training performance: 1) *do the MoE transformer's routers exacerbate forgetting relative to a dense model?*; 2) *do the routers maintain a balanced load on previous distributions after CPT?*; 3) *are the same strategies applied to dense models sufficient to continually pre-train MoE LLMs?* In what follows, we conduct a large-scale study training a 500M parameter dense transformer and four 500M-active/2B-total parameter MoE transformers, following the Switch Transformer architecture and a granular DeepSeek-inspired architecture. Each model is trained for 600B tokens. Our results establish a surprising robustness to distribution shifts for MoEs using both Sinkhorn-Balanced and Z-and-Aux-loss-balanced routing algorithms, even in MoEs continually pre-trained without replay. Moreover, we show that MoE LLMs maintain their sample efficiency (relative to a FLOP-matched dense model) during CPT and that they can match the performance of a fully re-trained MoE at a fraction of the cost.
Warming Up for Zeroth-Order Federated Pre-Training with Low Resource Clients
Federated learning enables collaborative model training across numerous edge devices without requiring participants to share data; however, … (see more)memory and communication constraints on these edge devices may preclude their participation in training. We consider a setting in which a subset of edge devices are below a critical memory or communication threshold required to conduct model updates. Under typical federated optimization algorithms, these devices are excluded from training which renders their data inaccessible and increases system induced bias. We are inspired by MeZO, a zeroth-order method used for memory-efficient fine-tuning. The increased variance inherent to zeroth-order gradient approximations has relegated previous zeroth-order optimizers exclusively to the domain of fine tuning; a limitation we seek to correct. We devise a federated, memory-efficient zeroth-order optimizer, ZOWarmUp that permits zeroth-order training from a random initialization. ZOWarmUp leverages differing client capabilities and careful variance reduction techniques to facilitate participation of under-represented, low-resource clients in model training. Like other federated zeroth-order methods, ZOWarmUp eliminates the need for edge devices to transmit their full gradients to the server and instead relies on only a small set of random seeds, rendering the up-link communication cost negligible. We present experiments using various datasets and model architectures to show that ZOWarmUp is a robust algorithm that can can be applied under a wide variety of circumstances. For systems with a high proportion of edge devices that would otherwise be excluded from training, this algorithm provides access to a greater volume and diversity of data, thus improving training outcomes.
Warming Up for Zeroth-Order Federated Pre-Training with Low Resource Clients
Federated learning enables collaborative model training across numerous edge devices without requiring participants to share data; however, … (see more)memory and communication constraints on these edge devices may preclude their participation in training. We consider a setting in which a subset of edge devices are below a critical memory or communication threshold required to conduct model updates. Under typical federated optimization algorithms, these devices are excluded from training which renders their data inaccessible and increases system induced bias. We are inspired by MeZO, a zeroth-order method used for memory-efficient fine-tuning. The increased variance inherent to zeroth-order gradient approximations has relegated previous zeroth-order optimizers exclusively to the domain of fine tuning; a limitation we seek to correct. We devise a federated, memory-efficient zeroth-order optimizer, ZOWarmUp that permits zeroth-order training from a random initialization. ZOWarmUp leverages differing client capabilities and careful variance reduction techniques to facilitate participation of under-represented, low-resource clients in model training. Like other federated zeroth-order methods, ZOWarmUp eliminates the need for edge devices to transmit their full gradients to the server and instead relies on only a small set of random seeds, rendering the up-link communication cost negligible. We present experiments using various datasets and model architectures to show that ZOWarmUp is a robust algorithm that can can be applied under a wide variety of circumstances. For systems with a high proportion of edge devices that would otherwise be excluded from training, this algorithm provides access to a greater volume and diversity of data, thus improving training outcomes.
Warming Up for Zeroth-Order Federated Pre-Training with Low Resource Clients
Federated learning enables collaborative model training across numerous edge devices without requiring participants to share data; however, … (see more)memory and communication constraints on these edge devices may preclude their participation in training. We consider a setting in which a subset of edge devices are below a critical memory or communication threshold required to conduct model updates. Under typical federated optimization algorithms, these devices are excluded from training which renders their data inaccessible and increases system induced bias. We are inspired by MeZO, a zeroth-order method used for memory-efficient fine-tuning. The increased variance inherent to zeroth-order gradient approximations has relegated previous zeroth-order optimizers exclusively to the domain of fine tuning; a limitation we seek to correct. We devise a federated, memory-efficient zeroth-order optimizer, ZOWarmUp that permits zeroth-order training from a random initialization. ZOWarmUp leverages differing client capabilities and careful variance reduction techniques to facilitate participation of under-represented, low-resource clients in model training. Like other federated zeroth-order methods, ZOWarmUp eliminates the need for edge devices to transmit their full gradients to the server and instead relies on only a small set of random seeds, rendering the up-link communication cost negligible. We present experiments using various datasets and model architectures to show that ZOWarmUp is a robust algorithm that can can be applied under a wide variety of circumstances. For systems with a high proportion of edge devices that would otherwise be excluded from training, this algorithm provides access to a greater volume and diversity of data, thus improving training outcomes.
Communication Efficient LLM Pre-training with SparseLoCo
Amir M. Sarfi
Joel Lidin
Model Parallelism With Subnetwork Data Parallelism
Pre-training large neural networks at scale imposes heavy memory demands on accelerators and often requires costly communication. We introdu… (see more)ce Subnetwork Data Parallelism (SDP), a distributed training framework that partitions a model into structured subnetworks trained across workers without exchanging activations. We study two complementary masking regimes: backward masking, which applies sparsity only in the backward step to retain unbiased gradients, and forward masking, which also removes parameters in the forward pass to deliver stronger efficiency gains while providing additional regularization. We further explore two subnetwork construction strategies: neuron level and block level, applied across both CNNs and transformers. In experiments spanning CNNs and transformers on CIFAR and ImageNet, as well as LLM pre-training on FineWeb, SDP reduces per-device memory usage by 30%-75% while maintaining or improving performance. Notably, in FLOP-matched settings, forward masking can sometimes achieve better performance.
Model Parallelism With Subnetwork Data Parallelism
Pre-training large neural networks at scale imposes heavy memory demands on accelerators and often requires costly communication. We introdu… (see more)ce Subnetwork Data Parallelism (SDP), a distributed training framework that partitions a model into structured subnetworks trained across workers without exchanging activations. We study two complementary masking regimes: backward masking, which applies sparsity only in the backward step to retain unbiased gradients, and forward masking, which also removes parameters in the forward pass to deliver stronger efficiency gains while providing additional regularization. We further explore two subnetwork construction strategies: neuron level and block level, applied across both CNNs and transformers. In experiments spanning CNNs and transformers on CIFAR and ImageNet, as well as LLM pre-training on FineWeb, SDP reduces per-device memory usage by 30%-75% while maintaining or improving performance. Notably, in FLOP-matched settings, forward masking can sometimes achieve better performance.
Rethinking Prompt Optimization: Reinforcement, Diversification, and Migration in Blackbox LLMs
MohammadReza Davari
Utkarsh Garg
Weixin Cai
Circuit Discovery Helps To Detect LLM Jailbreaking
Despite extensive safety alignment, large language models (LLMs) remain vulnerable to jailbreak attacks that bypass safeguards to elicit har… (see more)mful content. While prior work attributes this vulnerability to safety training limitations, the internal mechanisms by which LLMs process adversarial prompts remain poorly understood. We present a mechanistic analysis of the jailbreaking behavior in a large-scale, safety-aligned LLM, focusing on LLaMA-2-7B-chat-hf. Leveraging edge attribution patching and subnetwork probing, we systematically identify computational circuits responsible for generating affirmative responses to jailbreak prompts. Ablating these circuits during the first token prediction can reduce attack success rates by up to 80\%, demonstrating its critical role in safety bypass. Our analysis uncovers key attention heads and MLP pathways that mediate adversarial prompt exploitation, revealing how important tokens propagate through these components to override safety constraints. These findings advance the understanding of adversarial vulnerabilities in aligned LLMs and pave the way for targeted, interpretable defenses mechanisms based on mechanistic interpretability.
PyLO: Towards Accessible Learned Optimizers in PyTorch
Learned optimizers have been an active research topic over the past decade, with increasing progress toward practical, general-purpose optim… (see more)izers that can serve as drop-in replacements for widely used methods like Adam. However, recent advances -- such as VeLO, which was meta-trained for 4000 TPU-months -- remain largely inaccessible to the broader community, in part due to their reliance on JAX and the absence of user-friendly packages for applying the optimizers after meta-training. To address this gap, we introduce PyLO, a PyTorch-based library that brings learned optimizers to the broader machine learning community through familiar, widely adopted workflows. Unlike prior work focused on synthetic or convex tasks, our emphasis is on applying learned optimization to real-world large-scale pre-training tasks. Our release includes a CUDA-accelerated version of the small_fc_lopt learned optimizer architecture from (Metz et al., 2022a), delivering substantial speedups -- from 39.36 to 205.59 samples/sec throughput for training ViT B/16 with batch size 32. PyLO also allows us to easily combine learned optimizers with existing optimization tools such as learning rate schedules and weight decay. When doing so, we find that learned optimizers can substantially benefit. Our code is available at https://github.com/Belilovsky-Lab/pylo
Beyond Cosine Decay: On the effectiveness of Infinite Learning Rate Schedule for Continual Pre-training
The ever-growing availability of unlabeled data presents both opportunities and challenges for training artificial intelligence systems. Whi… (see more)le self-supervised learning (SSL) has emerged as a powerful paradigm for extracting meaningful representations from vast amounts of unlabeled data, existing methods still struggle to adapt to the non-stationary, non-IID nature of real-world data streams without forgetting previously learned knowledge. Recent works have adopted a repeated cosine annealing schedule for large-scale continual pre-training; however, these schedules (1) inherently cause forgetting during the re-warming phase and (2) have not been systematically compared to existing continual SSL methods. In this work, we systematically compare the widely used cosine schedule with the recently proposed infinite learning rate schedule and empirically find the latter to be a more effective alternative. Our extensive empirical evaluation across diverse image and language datasets demonstrates that the infinite learning rate schedule consistently enhances continual pre-training performance compared to a repeated cosine decay without being restricted to a fixed iteration budget. For instance, in a small-scale MAE pre-training setup, it outperforms several strong baselines from the literature. We then scale up our experiments to larger MAE pre-training and autoregressive language model pre-training. Our results show that the infinite learning rate schedule remains effective at scale, surpassing repeated cosine decay for both MAE pre-training and zero-shot LM benchmarks.