Portrait of Benjamin Therien

Benjamin Therien

PhD - Université de Montréal
Supervisor
Co-supervisor
Research Topics
Deep Learning
Large Language Models (LLM)
Meta-Learning
Optimization

Publications

Communication Efficient LLM Pre-training with SparseLoCo
Amir M. Sarfi
Joel Lidin
Revisiting Replay and Gradient Alignment for Continual Pre-Training of Large Language Models
Istabrak Abbes
Matthew D Riemer
Tsuguchika Tabaru
Hiroaki Kingetsu
Revisiting Replay and Gradient Alignment for Continual Pre-Training of Large Language Models
Istabrak Abbes
Matthew D Riemer
Tsuguchika Tabaru
Hiroaki Kingetsu
Training large language models (LLMs) typically involves pre-training on massive corpora, only to restart the process entirely when new data… (see more) becomes available. A more efficient and resource-conserving approach would be continual pre-training, where models are updated with new data rather than retraining from scratch. However, the introduction of new data often causes distribution shifts, leading to performance degradation on previously learned tasks. In this paper, we take a deeper look at two popular proposals for addressing this distribution shift within the continual learning literature: experience replay and gradient alignment. We consider continual pre-training of models within the Llama family of architectures at a large scale across languages with 100 billion tokens of training data in each language, finding that both replay and gradient alignment lead to more stable learning without forgetting. This conclusion holds both as we vary the model scale and as we vary the number and diversity of tasks. Moreover, we are the first to demonstrate the effectiveness of gradient alignment techniques in the context of LLM pre-training and propose an efficient implementation of meta-experience replay (MER) that imbues experience replay with the benefits of gradient alignment despite negligible compute and memory overhead. Our scaling analysis across model sizes and replay rates indicates that small rates of replaying old examples are definitely a more valuable use of compute than investing in model size, but that it is more compute efficient to scale the size of the model than invest in high rates of replaying old examples.
PyLO: Towards Accessible Learned Optimizers in PyTorch
Learned optimizers have been an active research topic over the past decade, with increasing progress toward practical, general-purpose optim… (see more)izers that can serve as drop-in replacements for widely used methods like Adam. However, recent advances -- such as VeLO, which was meta-trained for 4000 TPU-months -- remain largely inaccessible to the broader community, in part due to their reliance on JAX and the absence of user-friendly packages for applying the optimizers after meta-training. To address this gap, we introduce PyLO, a PyTorch-based library that brings learned optimizers to the broader machine learning community through familiar, widely adopted workflows. Unlike prior work focused on synthetic or convex tasks, our emphasis is on applying learned optimization to real-world large-scale pre-training tasks. Our release includes a CUDA-accelerated version of the small_fc_lopt learned optimizer architecture from (Metz et al., 2022a), delivering substantial speedups -- from 39.36 to 205.59 samples/sec throughput for training ViT B/16 with batch size 32. PyLO also allows us to easily combine learned optimizers with existing optimization tools such as learning rate schedules and weight decay. When doing so, we find that learned optimizers can substantially benefit. Our code is available at https://github.com/Belilovsky-Lab/pylo
Beyond Cosine Decay: On the effectiveness of Infinite Learning Rate Schedule for Continual Pre-training
The ever-growing availability of unlabeled data presents both opportunities and challenges for training artificial intelligence systems. Whi… (see more)le self-supervised learning (SSL) has emerged as a powerful paradigm for extracting meaningful representations from vast amounts of unlabeled data, existing methods still struggle to adapt to the non-stationary, non-IID nature of real-world data streams without forgetting previously learned knowledge. Recent works have adopted a repeated cosine annealing schedule for large-scale continual pre-training; however, these schedules (1) inherently cause forgetting during the re-warming phase and (2) have not been systematically compared to existing continual SSL methods. In this work, we systematically compare the widely used cosine schedule with the recently proposed infinite learning rate schedule and empirically find the latter to be a more effective alternative. Our extensive empirical evaluation across diverse image and language datasets demonstrates that the infinite learning rate schedule consistently enhances continual pre-training performance compared to a repeated cosine decay without being restricted to a fixed iteration budget. For instance, in a small-scale MAE pre-training setup, it outperforms several strong baselines from the literature. We then scale up our experiments to larger MAE pre-training and autoregressive language model pre-training. Our results show that the infinite learning rate schedule remains effective at scale, surpassing repeated cosine decay for both MAE pre-training and zero-shot LM benchmarks.
MuLoCo: Muon is a practical inner optimizer for DiLoCo
PyLO: Towards Accessible Learned Optimizers in PyTorch
Learned optimizers have been an active research topic over the past decade, with increasing progress toward practical, general-purpose optim… (see more)izers that can serve as drop-in replacements for widely used methods like Adam. However, recent advances -- such as VeLO, which was meta-trained for 4000 TPU-months -- remain largely inaccessible to the broader community, in part due to their reliance on JAX and the absence of user-friendly packages for applying the optimizers after meta-training. To address this gap, we introduce PyLO, a PyTorch-based library that brings learned optimizers to the broader machine learning community through familiar, widely adopted workflows. Unlike prior work focused on synthetic or convex tasks, our emphasis is on applying learned optimization to real-world large-scale pre-training tasks. Our release includes a CUDA-accelerated version of the small_fc_lopt learned optimizer architecture from (Metz et al., 2022a), delivering substantial speedups -- from 39.36 to 205.59 samples/sec throughput for training ViT B/16 with batch size 32. PyLO also allows us to easily combine learned optimizers with existing optimization tools such as learning rate schedules and weight decay. When doing so, we find that learned optimizers can substantially benefit. Our code is available at https://github.com/Belilovsky-Lab/pylo
Continual Pre-training of MoEs: How robust is your router?
Zain Sarwar
Ashwinee Panda
Anirban Das
Shi-Xiong Zhang
Stephen Rawls
Sambit Sahu
Beyond Cosine Decay: On the effectiveness of Infinite Learning Rate Schedule for Continual Pre-training
The ever-growing availability of unlabeled data presents both opportunities and challenges for training artificial intelligence systems. Whi… (see more)le self-supervised learning (SSL) has emerged as a powerful paradigm for extracting meaningful representations from vast amounts of unlabeled data, existing methods still struggle to adapt to the non-stationary, non-IID nature of real-world data streams without forgetting previously learned knowledge. Recent works have adopted a repeated cosine annealing schedule for large-scale continual pre-training; however, these schedules (1) inherently cause forgetting during the re-warming phase and (2) have not been systematically compared to existing continual SSL methods. In this work, we systematically compare the widely used cosine schedule with the recently proposed infinite learning rate schedule and empirically find the latter to be a more effective alternative. Our extensive empirical evaluation across diverse image and language datasets demonstrates that the infinite learning rate schedule consistently enhances continual pre-training performance compared to a repeated cosine decay without being restricted to a fixed iteration budget. For instance, in a small-scale MAE pre-training setup, it outperforms several strong baselines from the literature. We then scale up our experiments to larger MAE pre-training and autoregressive language model pre-training. Our results show that the infinite learning rate schedule remains effective at scale, surpassing repeated cosine decay for both MAE pre-training and zero-shot LM benchmarks.
Continual Pre-training of MoEs: How robust is your router?
Zain Sarwar
Ashwinee Panda
Anirban Das
Shi-Xiong Zhang
Stephen Rawls
Sambit Sahu
Meta-learning Optimizers for Communication-Efficient Learning
$\mu$LO: Compute-Efficient Meta-Generalization of Learned Optimizers