Portrait of Benjamin Therien

Benjamin Therien

PhD - Université de Montréal
Supervisor
Co-supervisor
Research Topics
Deep Learning
Large Language Models (LLM)
Meta-Learning
Optimization

Publications

Parametric Scattering Networks
Shanel Gauthier
Laurent Alséne-Racicot
Michael Eickenberg
The wavelet scattering transform creates geometric in-variants and deformation stability. In multiple signal do-mains, it has been shown to … (see more)yield more discriminative rep-resentations compared to other non-learned representations and to outperform learned representations in certain tasks, particularly on limited labeled data and highly structured signals. The wavelet filters used in the scattering trans-form are typically selected to create a tight frame via a pa-rameterized mother wavelet. In this work, we investigate whether this standard wavelet filterbank construction is op-timal. Focusing on Morlet wavelets, we propose to learn the scales, orientations, and aspect ratios of the filters to produce problem-specific parameterizations of the scattering transform. We show that our learned versions of the scattering transform yield significant performance gains in small-sample classification settings over the standard scat-tering transform. Moreover, our empirical results suggest that traditional filterbank constructions may not always be necessary for scattering transforms to extract effective rep-resentations.
Parametric Scattering Networks
Shanel Gauthier
Benjamin Th'erien
Laurent Alséne-Racicot
Michael Eickenberg
The wavelet scattering transform creates geometric in-variants and deformation stability. In multiple signal do-mains, it has been shown to … (see more)yield more discriminative rep-resentations compared to other non-learned representations and to outperform learned representations in certain tasks, particularly on limited labeled data and highly structured signals. The wavelet filters used in the scattering trans-form are typically selected to create a tight frame via a pa-rameterized mother wavelet. In this work, we investigate whether this standard wavelet filterbank construction is op-timal. Focusing on Morlet wavelets, we propose to learn the scales, orientations, and aspect ratios of the filters to produce problem-specific parameterizations of the scattering transform. We show that our learned versions of the scattering transform yield significant performance gains in small-sample classification settings over the standard scat-tering transform. Moreover, our empirical results suggest that traditional filterbank constructions may not always be necessary for scattering transforms to extract effective rep-resentations.
Learning Optimizers for Local SGD
Communication-efficient variants of SGD, specifically local SGD, have received a great deal of interest in recent years. These approaches co… (see more)mpute multiple gradient steps locally, that is on each worker, before averaging model parameters, helping relieve the critical communication bottleneck in distributed deep learning training. Although many variants of these approaches have been proposed, they can sometimes lag behind state-of-the-art optimizers for deep learning. In this work, we incorporate local optimizers that compute multiple updates into a learned optimization framework, allowing to meta-learn potentially more efficient local SGD algorithms. Our results demonstrate that local learned optimizers can substantially outperform local SGD and its sophisticated variants while maintaining their communication efficiency. We show that the learned optimizers can generalize to new datasets and architectures, demonstrating the potential of learned optimizers for improving communication-efficient distributed learning.