Portrait of Abhinav Moudgil

Abhinav Moudgil

PhD - Concordia University
Supervisor
Research Topics
Deep Learning
Optimization

Publications

PyLO: Towards Accessible Learned Optimizers in PyTorch
Learned optimizers have been an active research topic over the past decade, with increasing progress toward practical, general-purpose optim… (see more)izers that can serve as drop-in replacements for widely used methods like Adam. However, recent advances -- such as VeLO, which was meta-trained for 4000 TPU-months -- remain largely inaccessible to the broader community, in part due to their reliance on JAX and the absence of user-friendly packages for applying the optimizers after meta-training. To address this gap, we introduce PyLO, a PyTorch-based library that brings learned optimizers to the broader machine learning community through familiar, widely adopted workflows. Unlike prior work focused on synthetic or convex tasks, our emphasis is on applying learned optimization to real-world large-scale pre-training tasks. Our release includes a CUDA-accelerated version of the small_fc_lopt learned optimizer architecture from (Metz et al., 2022a), delivering substantial speedups -- from 39.36 to 205.59 samples/sec throughput for training ViT B/16 with batch size 32. PyLO also allows us to easily combine learned optimizers with existing optimization tools such as learning rate schedules and weight decay. When doing so, we find that learned optimizers can substantially benefit. Our code is available at https://github.com/Belilovsky-Lab/pylo
PyLO: Towards Accessible Learned Optimizers in PyTorch
Learned optimizers have been an active research topic over the past decade, with increasing progress toward practical, general-purpose optim… (see more)izers that can serve as drop-in replacements for widely used methods like Adam. However, recent advances -- such as VeLO, which was meta-trained for 4000 TPU-months -- remain largely inaccessible to the broader community, in part due to their reliance on JAX and the absence of user-friendly packages for applying the optimizers after meta-training. To address this gap, we introduce PyLO, a PyTorch-based library that brings learned optimizers to the broader machine learning community through familiar, widely adopted workflows. Unlike prior work focused on synthetic or convex tasks, our emphasis is on applying learned optimization to real-world large-scale pre-training tasks. Our release includes a CUDA-accelerated version of the small_fc_lopt learned optimizer architecture from (Metz et al., 2022a), delivering substantial speedups -- from 39.36 to 205.59 samples/sec throughput for training ViT B/16 with batch size 32. PyLO also allows us to easily combine learned optimizers with existing optimization tools such as learning rate schedules and weight decay. When doing so, we find that learned optimizers can substantially benefit. Our code is available at https://github.com/Belilovsky-Lab/pylo
Accelerating Training with Neuron Interaction and Nowcasting Networks
Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However,… (see more) learnable update rules can be costly and unstable to train and use. A simpler recently proposed approach to accelerate training is to use Adam for most of the optimization steps and periodically, only every few steps, nowcast (predict future) parameters. We improve this approach by Neuron interaction and Nowcasting (NiNo) networks. NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters by learning in a supervised way from a set of training trajectories over multiple tasks. We show that in some networks, such as Transformers, neuron connectivity is non-trivial. By accurately modeling neuron connectivity, we allow NiNo to accelerate Adam training by up to 50\% in vision and language tasks.
Celo: Training Versatile Learned Optimizers on a Compute Diet
Learned optimization has emerged as a promising alternative to hand-crafted optimizers, with the potential to discover stronger learned upda… (see more)te rules that enable faster, hyperparameter-free training of neural networks. A critical element for practically useful learned optimizers, that can be used off-the-shelf after meta-training, is strong meta-generalization: the ability to apply the optimizers to new tasks. Recent state-of-the-art work in learned optimizers, VeLO (Metz et al., 2022), requires a large number of highly diverse meta-training tasks along with massive computational resources, 4000 TPU months, to achieve meta-generalization. This makes further improvements to such learned optimizers impractical. In this work, we identify several key elements in learned optimizer architectures and meta-training procedures that can lead to strong meta-generalization. We also propose evaluation metrics to reliably assess quantitative performance of an optimizer at scale on a set of evaluation tasks. Our proposed approach, Celo, makes a significant leap in improving the meta-generalization performance of learned optimizers and also outperforms tuned state-of-the-art optimizers on a diverse set of out-of-distribution tasks, despite being meta-trained for just 24 GPU hours.
Learning Versatile Optimizers on a Compute Diet
Learned optimization has emerged as a promising alternative to hand-crafted optimizers, with the potential to discover stronger learned upda… (see more)te rules that enable faster, hyperparameter-free training of neural networks. A critical element for practically useful learned optimizers, that can be used off-the-shelf after meta-training, is strong meta-generalization: the ability to apply the optimizers to new tasks. Recent state-of-the-art work in learned optimizers, VeLO (Metz et al., 2022), requires a large number of highly diverse meta-training tasks along with massive computational resources, 4000 TPU months, to achieve meta-generalization. This makes further improvements to such learned optimizers impractical. In this work, we identify several key elements in learned optimizer architectures and meta-training procedures that can lead to strong meta-generalization. We also propose evaluation metrics to reliably assess quantitative performance of an optimizer at scale on a set of evaluation tasks. Our proposed approach, Celo, makes a significant leap in improving the meta-generalization performance of learned optimizers and also outperforms tuned state-of-the-art optimizers on a diverse set of out-of-distribution tasks, despite being meta-trained for just 24 GPU hours.
Learning Versatile Optimizers on a Compute Diet
Learned optimization has emerged as a promising alternative to hand-crafted optimizers, with the potential to discover stronger learned upda… (see more)te rules that enable faster, hyperparameter-free training of neural networks. A critical element for practically useful learned optimizers, that can be used off-the-shelf after meta-training, is strong meta-generalization: the ability to apply the optimizers to new tasks. Recent state-of-the-art work in learned optimizers, VeLO (Metz et al., 2022), requires a large number of highly diverse meta-training tasks along with massive computational resources, 4000 TPU months, to achieve meta-generalization. This makes further improvements to such learned optimizers impractical. In this work, we identify several key elements in learned optimizer architectures and meta-training procedures that can lead to strong meta-generalization. We also propose evaluation metrics to reliably assess quantitative performance of an optimizer at scale on a set of evaluation tasks. Our proposed approach, Celo, makes a significant leap in improving the meta-generalization performance of learned optimizers and also outperforms tuned state-of-the-art optimizers on a diverse set of out-of-distribution tasks, despite being meta-trained for just 24 GPU hours.
Celo: Training Versatile Learned Optimizers on a Compute Diet
Learned optimization has emerged as a promising alternative to hand-crafted optimizers, with the potential to discover stronger learned upda… (see more)te rules that enable faster, hyperparameter-free training of neural networks. A critical element for practically useful learned optimizers, that can be used off-the-shelf after meta-training, is strong meta-generalization: the ability to apply the optimizers to new tasks. Recent state-of-the-art work in learned optimizers, VeLO (Metz et al., 2022), requires a large number of highly diverse meta-training tasks along with massive computational resources, 4000 TPU months, to achieve meta-generalization. This makes further improvements to such learned optimizers impractical. In this work, we identify several key elements in learned optimizer architectures and meta-training procedures that can lead to strong meta-generalization. We also propose evaluation metrics to reliably assess quantitative performance of an optimizer at scale on a set of evaluation tasks. Our proposed approach, Celo, makes a significant leap in improving the meta-generalization performance of learned optimizers and also outperforms tuned state-of-the-art optimizers on a diverse set of out-of-distribution tasks, despite being meta-trained for just 24 GPU hours.
Meta-learning Optimizers for Communication-Efficient Learning
Accelerating Training with Neuron Interaction and Nowcasting Networks
Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However,… (see more) learnable update rules can be costly and unstable to train and use. Recently, Jang et al. (2023) proposed a simpler approach to accelerate training based on weight nowcaster networks (WNNs). In their approach, Adam is used for most of the optimization steps and periodically, only every few steps, a WNN nowcasts (predicts near future) parameters. We improve WNNs by proposing neuron interaction and nowcasting (NiNo) networks. In contrast to WNNs, NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters. We further show that in some networks, such as Transformers, modeling neuron connectivity accurately is challenging. We address this and other limitations, which allows NiNo to accelerate Adam training by up to 50% in vision and language tasks.
Can We Learn Communication-Efficient Optimizers?
Learning Optimizers for Local SGD
Learning to Optimize with Recurrent Hierarchical Transformers