Portrait of Eugene Belilovsky is unavailable

Eugene Belilovsky

Associate Academic Member
Assistant Professor, Concordia University, Department of Computer Science and Software Engineering
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Deep Learning
Distributed Systems
Optimization

Biography

Eugene Belilovsky is an assistant professor in the Department of Computer Science and Software Engineering at Concordia University.

He is also an associate academic member of Mila – Quebec Artificial Intelligence Institute and an adjunct professor at Université de Montréal.

Belilovsky’s research specialties lie in computer vision and deep learning. His current interests include continual learning and few-shot learning, along with applications of these aspects at the intersection of computer vision and language processing.

Current Students

PhD - Concordia University
Master's Research - Concordia University
Co-supervisor :
PhD - Concordia University
Co-supervisor :
Master's Research - Université de Montréal
Co-supervisor :
Master's Research - Concordia University
Co-supervisor :
PhD - Concordia University
Co-supervisor :
Master's Research - Concordia University
Co-supervisor :
PhD - Concordia University
PhD - Concordia University
Postdoctorate - Concordia University
Co-supervisor :
PhD - Concordia University
Co-supervisor :
PhD - Concordia University
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Principal supervisor :
PhD - Concordia University
Co-supervisor :
Master's Research - Concordia University

Publications

Simple and Scalable Strategies to Continually Pre-train Large Language Models
Kshitij Gupta
Mats Leon Richter
Quentin Gregory Anthony
Timothee LESORT
Large language models (LLMs) are routinely pre-trained on billions of tokens, only to start the process over again once new data becomes ava… (see more)ilable. A much more efficient solution is to continually pre-train these models, saving significant compute compared to re-training. However, the distribution shift induced by new data typically results in degraded performance on previous data or poor adaptation to the new data. In this work, we show that a simple and scalable combination of learning rate (LR) re-warming, LR re-decaying, and replay of previous data is sufficient to match the performance of fully re-training from scratch on all available data, as measured by the final loss and the average score on several language model (LM) evaluation benchmarks. Specifically, we show this for a weak but realistic distribution shift between two commonly used LLM pre-training datasets (English
Harmony in Diversity: Merging Neural Networks with Canonical Correlation Analysis
Albert Manuel Orozco Camacho
Ensembling multiple models enhances predictive performance by utilizing the varied learned features of the different models but incurs signi… (see more)ficant computational and storage costs. Model fusion, which combines parameters from multiple models into one, aims to mitigate these costs but faces practical challenges due to the complex, non-convex nature of neural network loss landscapes, where learned minima are often separated by high loss barriers. Recent works have explored using permutations to align network features, reducing the loss barrier in parameter space. However, permutations are restrictive since they assume a one-to-one mapping between the different models' neurons exists. We propose a new model merging algorithm, CCA Merge, which is based on Canonical Correlation Analysis and aims to maximize the correlations between linear combinations of the model features. We show that our method of aligning models leads to better performances than past methods when averaging models trained on the same, or differing data splits. We also extend this analysis into the harder many models setting where more than 2 models are merged, and we find that CCA Merge works significantly better in this setting than past methods.
Generalization of deep learning models for hepatic steatosis grading using B-mode ultrasound images
Yijun Qi
Michael Chassé
An Tang
Guy Cloutier
Channel-Selective Normalization for Label-Shift Robust Test-Time Adaptation
An Tang
Guy Cloutier
Michael Eickenberg
Deep neural networks have useful applications in many different tasks, however their performance can be severely affected by changes in the … (see more)data distribution. For example, in the biomedical field, their performance can be affected by changes in the data (different machines, populations) between training and test datasets. To ensure robustness and generalization to real-world scenarios, test-time adaptation has been recently studied as an approach to adjust models to a new data distribution during inference. Test-time batch normalization is a simple and popular method that achieved compelling performance on domain shift benchmarks. It is implemented by recalculating batch normalization statistics on test batches. Prior work has focused on analysis with test data that has the same label distribution as the training data. However, in many practical applications this technique is vulnerable to label distribution shifts, sometimes producing catastrophic failure. This presents a risk in applying test time adaptation methods in deployment. We propose to tackle this challenge by only selectively adapting channels in a deep network, minimizing drastic adaptation that is sensitive to label shifts. Our selection scheme is based on two principles that we empirically motivate: (1) later layers of networks are more sensitive to label shift (2) individual features can be sensitive to specific classes. We apply the proposed technique to three classification tasks, including CIFAR10-C, Imagenet-C, and diagnosis of fatty liver, where we explore both covariate and label distribution shifts. We find that our method allows to bring the benefits of TTA while significantly reducing the risk of failure common in other methods, while being robust to choice in hyperparameters.
Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks
MohammadReza Davari
The rapid development of AI systems has been greatly influenced by the emergence of foundation models. A common approach for targeted proble… (see more)ms involves fine-tuning these pre-trained foundation models for specific target tasks, resulting in a rapid spread of models fine-tuned across a diverse array of tasks. This work focuses on the problem of merging multiple fine-tunings of the same foundation model derived from a spectrum of auxiliary tasks. We introduce a new simple method, Model Breadcrumbs, which consists of a sparsely defined weight set that guides model adaptation within the weight space of a pre-trained model. These breadcrumbs are constructed by subtracting the weights from a pre-trained model before and after fine-tuning, followed by a sparsification process that eliminates weight outliers and negligible perturbations. Our experiments demonstrate the effectiveness of Model Breadcrumbs to simultaneously improve performance across multiple tasks. This contribution aligns with the evolving paradigm of updatable machine learning, reminiscent of the collaborative principles underlying open-source software development, fostering a community-driven effort to reliably update machine learning models. Our method is shown to be more efficient and unlike previous proposals does not require hyperparameter tuning for each new task added. Through extensive experimentation involving various models, tasks, and modalities we establish that integrating Model Breadcrumbs offers a simple, efficient, and highly effective approach for constructing multi-task models and facilitating updates to foundation models.
Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks
MohammadReza Davari
The rapid development of AI systems has been greatly influenced by the emergence of foundation models. A common approach for targeted proble… (see more)ms involves fine-tuning these pre-trained foundation models for specific target tasks, resulting in a rapid spread of models fine-tuned across a diverse array of tasks. This work focuses on the problem of merging multiple fine-tunings of the same foundation model derived from a spectrum of auxiliary tasks. We introduce a new simple method, Model Breadcrumbs, which consists of a sparsely defined weight set that guides model adaptation within the weight space of a pre-trained model. These breadcrumbs are constructed by subtracting the weights from a pre-trained model before and after fine-tuning, followed by a sparsification process that eliminates weight outliers and negligible perturbations. Our experiments demonstrate the effectiveness of Model Breadcrumbs to simultaneously improve performance across multiple tasks. This contribution aligns with the evolving paradigm of updatable machine learning, reminiscent of the collaborative principles underlying open-source software development, fostering a community-driven effort to reliably update machine learning models. Our method is shown to be more efficient and unlike previous proposals does not require hyperparameter tuning for each new task added. Through extensive experimentation involving various models, tasks, and modalities we establish that integrating Model Breadcrumbs offers a simple, efficient, and highly effective approach for constructing multi-task models and facilitating updates to foundation models.
Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks
MohammadReza Davari
Can We Learn Communication-Efficient Optimizers?
Channel Selection for Test-Time Adaptation Under Distribution Shift
Muawiz Sajjad Chaudhary
An Tang
Guy Cloutier
Michael Eickenberg
To ensure robustness and generalization to real-world scenarios, test-time adaptation has been recently studied as an approach to adjust mod… (see more)els to a new data distribution during inference. Test-time batch normalization is a simple and popular method that achieved compelling performance on domain shift benchmarks by recalculating batch normalization statistics on test batches. However, in many practical applications this technique is vulnerable to label distribution shifts. We propose to tackle this challenge by only selectively adapting channels in a deep network, minimizing drastic adaptation that is sensitive to label shifts. We find that adapted models significantly improve the performance compared to the baseline models and counteract unknown label shifts.
Learning Optimizers for Local SGD
DragD3D: Vertex-based Editing for Realistic Mesh Deformations using 2D Diffusion Priors
Tianhao Xie
Sudhir Mudur
Tiberiu Popa
Direct mesh editing and deformation are key components in the geometric modeling and animation pipeline. Direct mesh editing methods are typ… (see more)ically framed as optimization problems combining user-specified vertex constraints with a regularizer that determines the position of the rest of the vertices. The choice of the regularizer is key to the realism and authenticity of the final result. Physics and geometry-based regularizers are not aware of the global context and semantics of the object, and the more recent deep learning priors are limited to a specific class of 3D object deformations. In this work, our main contribution is a local mesh editing method called DragD3D for global context-aware realistic deformation through direct manipulation of a few vertices. DragD3D is not restricted to any class of objects. It achieves this by combining the classic geometric ARAP (as rigid as possible) regularizer with 2D priors obtained from a large-scale diffusion model. Specifically, we render the objects from multiple viewpoints through a differentiable renderer and use the recently introduced DDS loss which scores the faithfulness of the rendered image to one from a diffusion model. DragD3D combines the approximate gradients of the DDS with gradients from the ARAP loss to modify the mesh vertices via neural Jacobian field, while also satisfying vertex constraints. We show that our deformations are realistic and aware of the global context of the objects, and provide better results than just using geometric regularizers.
Comparison of Radiologists and Deep Learning for US Grading of Hepatic Steatosis.
Sara-Ivana Calce
Pamela Boustros
Cassandra Larocque-Rigney
Laurent Patry-Beaudoin
Yi Hui Luo
Emre Aslan
John Marinos
Talal M. Alamri
Kim-Nhien Vu
Jessica Murphy-Lavallée
Jean-Sébastien Billiard
Emmanuel Montagnon
Hongliang Li
Samuel Kadoury
Bich Nguyen
Shanel Gauthier
Michael Chassé
Guy Cloutier
An Tang
Background Screening for nonalcoholic fatty liver disease (NAFLD) is suboptimal due to the subjective interpretation of US images. Purpose T… (see more)o evaluate the agreement and diagnostic performance of radiologists and a deep learning model in grading hepatic steatosis in NAFLD at US, with biopsy as the reference standard. Materials and Methods This retrospective study included patients with NAFLD and control patients without hepatic steatosis who underwent abdominal US and contemporaneous liver biopsy from September 2010 to October 2019. Six readers visually graded steatosis on US images twice, 2 weeks apart. Reader agreement was assessed with use of κ statistics. Three deep learning techniques applied to B-mode US images were used to classify dichotomized steatosis grades. Classification performance of human radiologists and the deep learning model for dichotomized steatosis grades (S0, S1, S2, and S3) was assessed with area under the receiver operating characteristic curve (AUC) on a separate test set. Results The study included 199 patients (mean age, 53 years ± 13 [SD]; 101 men). On the test set (n = 52), radiologists had fair interreader agreement (0.34 [95% CI: 0.31, 0.37]) for classifying steatosis grades S0 versus S1 or higher, while AUCs were between 0.49 and 0.84 for radiologists and 0.85 (95% CI: 0.83, 0.87) for the deep learning model. For S0 or S1 versus S2 or S3, radiologists had fair interreader agreement (0.30 [95% CI: 0.27, 0.33]), while AUCs were between 0.57 and 0.76 for radiologists and 0.73 (95% CI: 0.71, 0.75) for the deep learning model. For S2 or lower versus S3, radiologists had fair interreader agreement (0.37 [95% CI: 0.33, 0.40]), while AUCs were between 0.52 and 0.81 for radiologists and 0.67 (95% CI: 0.64, 0.69) for the deep learning model. Conclusion Deep learning approaches applied to B-mode US images provided comparable performance with human readers for detection and grading of hepatic steatosis. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Tuthill in this issue.