Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Federated learning enables collaborative model training across numerous edge devices without requiring participants to share data; however, … (see more)memory and communication constraints on these edge devices may preclude their participation in training. We consider a setting in which a subset of edge devices are below a critical memory or communication threshold required to conduct model updates. Under typical federated optimization algorithms, these devices are excluded from training which renders their data inaccessible and increases system induced bias. We are inspired by MeZO, a zeroth-order method used for memory-efficient fine-tuning. The increased variance inherent to zeroth-order gradient approximations has relegated previous zeroth-order optimizers exclusively to the domain of fine tuning; a limitation we seek to correct. We devise a federated, memory-efficient zeroth-order optimizer, ZOWarmUp that permits zeroth-order training from a random initialization. ZOWarmUp leverages differing client capabilities and careful variance reduction techniques to facilitate participation of under-represented, low-resource clients in model training. Like other federated zeroth-order methods, ZOWarmUp eliminates the need for edge devices to transmit their full gradients to the server and instead relies on only a small set of random seeds, rendering the up-link communication cost negligible. We present experiments using various datasets and model architectures to show that ZOWarmUp is a robust algorithm that can can be applied under a wide variety of circumstances. For systems with a high proportion of edge devices that would otherwise be excluded from training, this algorithm provides access to a greater volume and diversity of data, thus improving training outcomes.
In Federated Learning a global model is learned by aggregating model updates computed at a set of independent client nodes. To reduce commun… (see more)ication costs, multiple gradient steps are performed at each node prior to aggregation. A key challenge in this setting is data heterogeneity across clients resulting in differing local objectives. This can lead clients to overly minimize their own local objective consequently diverging from the global solution. We demonstrate that individual client models experience a catastrophic forgetting with respect to data from other clients and propose an efficient approach that modifies the cross-entropy objective on a per-client basis by re-weighting the softmax logits prior to computing the loss. This approach shields classes outside a client’s label set from abrupt representation change and we empirically demonstrate it can alleviate client forgetting and provide consistent improvements to standard federated learning algorithms. Our method is particularly beneficial under the most challenging federated learning settings where data heterogeneity is high and client participation in each round is low.
In Federated Learning, a global model is learned by aggregating model updates computed at a set of independent client nodes, to reduce commu… (see more)nication costs multiple gradient steps are performed at each node prior to aggregation. A key challenge in this setting is data heterogeneity across clients resulting in differing local objectives which can lead clients to overly minimize their own local objective, diverging from the global solution. We demonstrate that individual client models experience a catastrophic forgetting with respect to data from other clients and propose an efficient approach that modifies the cross-entropy objective on a per-client basis by re-weighting the softmax logits prior to computing the loss. This approach shields classes outside a client's label set from abrupt representation change and we empirically demonstrate it can alleviate client forgetting and provide consistent improvements to standard federated learning algorithms. Our method is particularly beneficial under the most challenging federated learning settings where data heterogeneity is high and client participation in each round is low.