Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Le programme a récemment publié sa première note politique, intitulée « Considérations politiques à l’intersection des technologies quantiques et de l’intelligence artificielle », réalisée par Padmapriya Mohan.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Federated learning enables collaborative model training across numerous edge devices without requiring participants to share data; however, … (voir plus)memory and communication constraints on these edge devices may preclude their participation in training. We consider a setting in which a subset of edge devices are below a critical memory or communication threshold required to conduct model updates. Under typical federated optimization algorithms, these devices are excluded from training which renders their data inaccessible and increases system induced bias. We are inspired by MeZO, a zeroth-order method used for memory-efficient fine-tuning. The increased variance inherent to zeroth-order gradient approximations has relegated previous zeroth-order optimizers exclusively to the domain of fine tuning; a limitation we seek to correct. We devise a federated, memory-efficient zeroth-order optimizer, ZOWarmUp that permits zeroth-order training from a random initialization. ZOWarmUp leverages differing client capabilities and careful variance reduction techniques to facilitate participation of under-represented, low-resource clients in model training. Like other federated zeroth-order methods, ZOWarmUp eliminates the need for edge devices to transmit their full gradients to the server and instead relies on only a small set of random seeds, rendering the up-link communication cost negligible. We present experiments using various datasets and model architectures to show that ZOWarmUp is a robust algorithm that can can be applied under a wide variety of circumstances. For systems with a high proportion of edge devices that would otherwise be excluded from training, this algorithm provides access to a greater volume and diversity of data, thus improving training outcomes.
In Federated Learning a global model is learned by aggregating model updates computed at a set of independent client nodes. To reduce commun… (voir plus)ication costs, multiple gradient steps are performed at each node prior to aggregation. A key challenge in this setting is data heterogeneity across clients resulting in differing local objectives. This can lead clients to overly minimize their own local objective consequently diverging from the global solution. We demonstrate that individual client models experience a catastrophic forgetting with respect to data from other clients and propose an efficient approach that modifies the cross-entropy objective on a per-client basis by re-weighting the softmax logits prior to computing the loss. This approach shields classes outside a client’s label set from abrupt representation change and we empirically demonstrate it can alleviate client forgetting and provide consistent improvements to standard federated learning algorithms. Our method is particularly beneficial under the most challenging federated learning settings where data heterogeneity is high and client participation in each round is low.
In Federated Learning, a global model is learned by aggregating model updates computed at a set of independent client nodes, to reduce commu… (voir plus)nication costs multiple gradient steps are performed at each node prior to aggregation. A key challenge in this setting is data heterogeneity across clients resulting in differing local objectives which can lead clients to overly minimize their own local objective, diverging from the global solution. We demonstrate that individual client models experience a catastrophic forgetting with respect to data from other clients and propose an efficient approach that modifies the cross-entropy objective on a per-client basis by re-weighting the softmax logits prior to computing the loss. This approach shields classes outside a client's label set from abrupt representation change and we empirically demonstrate it can alleviate client forgetting and provide consistent improvements to standard federated learning algorithms. Our method is particularly beneficial under the most challenging federated learning settings where data heterogeneity is high and client participation in each round is low.