Portrait of Eugene Belilovsky is unavailable

Eugene Belilovsky

Associate Academic Member
Assistant Professor, Concordia University, Department of Computer Science and Software Engineering
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Deep Learning
Distributed Systems
Optimization

Biography

Eugene Belilovsky is an assistant professor in the Department of Computer Science and Software Engineering at Concordia University.

He is also an associate academic member of Mila – Quebec Artificial Intelligence Institute and an adjunct professor at Université de Montréal.

Belilovsky’s research specialties lie in computer vision and deep learning. His current interests include continual learning and few-shot learning, along with applications of these aspects at the intersection of computer vision and language processing.

Current Students

PhD - Concordia University
Master's Research - Concordia University
Co-supervisor :
PhD - Concordia University
Co-supervisor :
Master's Research - Université de Montréal
Co-supervisor :
Master's Research - Concordia University
Co-supervisor :
PhD - Concordia University
Co-supervisor :
Master's Research - Concordia University
Co-supervisor :
PhD - Concordia University
PhD - Concordia University
Postdoctorate - Concordia University
Co-supervisor :
PhD - Concordia University
Co-supervisor :
PhD - Concordia University
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Principal supervisor :
PhD - Concordia University
Co-supervisor :
Master's Research - Concordia University

Publications

Channel-Selective Normalization for Label-Shift Robust Test-Time Adaptation
Pedro Vianna
Muawiz Chaudhary
Paria Mehrbod
An Tang
Guy Cloutier
Michael Eickenberg
Deep neural networks have useful applications in many different tasks, however their performance can be severely affected by changes in the … (see more)data distribution. For example, in the biomedical field, their performance can be affected by changes in the data (different machines, populations) between training and test datasets. To ensure robustness and generalization to real-world scenarios, test-time adaptation has been recently studied as an approach to adjust models to a new data distribution during inference. Test-time batch normalization is a simple and popular method that achieved compelling performance on domain shift benchmarks. It is implemented by recalculating batch normalization statistics on test batches. Prior work has focused on analysis with test data that has the same label distribution as the training data. However, in many practical applications this technique is vulnerable to label distribution shifts, sometimes producing catastrophic failure. This presents a risk in applying test time adaptation methods in deployment. We propose to tackle this challenge by only selectively adapting channels in a deep network, minimizing drastic adaptation that is sensitive to label shifts. Our selection scheme is based on two principles that we empirically motivate: (1) later layers of networks are more sensitive to label shift (2) individual features can be sensitive to specific classes. We apply the proposed technique to three classification tasks, including CIFAR10-C, Imagenet-C, and diagnosis of fatty liver, where we explore both covariate and label distribution shifts. We find that our method allows to bring the benefits of TTA while significantly reducing the risk of failure common in other methods, while being robust to choice in hyperparameters.
FairDropout: Using Example-Tied Dropout to Enhance Generalization of Minority Groups
G'eraldin Nanfack
Deep learning models frequently exploit spurious features in training data to achieve low training error, often resulting in poor generaliza… (see more)tion when faced with shifted testing distributions. To address this issue, various methods from imbalanced learning, representation learning, and classifier recalibration have been proposed to enhance the robustness of deep neural networks against spurious correlations. In this paper, we observe that models trained with empirical risk minimization tend to generalize well for examples from the majority groups while memorizing instances from minority groups. Building on recent findings that show memorization can be localized to a limited number of neurons, we apply example-tied dropout as a method we term FairDropout, aimed at redirecting this memorization to specific neurons that we subsequently drop out during inference. We empirically evaluate FairDropout using the subpopulation benchmark suite encompassing vision, language, and healthcare tasks, demonstrating that it significantly reduces reliance on spurious correlations, and outperforms state-of-the-art methods.
FairDropout: Using Example-Tied Dropout to Enhance Generalization of Minority Groups
G'eraldin Nanfack
Accelerating Training with Neuron Interaction and Nowcasting Networks
Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However,… (see more) learnable update rules can be costly and unstable to train and use. A simpler recently proposed approach to accelerate training is to use Adam for most of the optimization steps and periodically, only every few steps, nowcast (predict future) parameters. We improve this approach by Neuron interaction and Nowcasting (NiNo) networks. NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters by learning in a supervised way from a set of training trajectories over multiple tasks. We show that in some networks, such as Transformers, neuron connectivity is non-trivial. By accurately modeling neuron connectivity, we allow NiNo to accelerate Adam training by up to 50\% in vision and language tasks.
AdaFisher: Adaptive Second Order Optimization via Fisher Information
Damien MARTINS GOMES
Yanlei Zhang
Mahdi S. Hosseini
First-order optimization methods are currently the mainstream in training deep neural networks (DNNs). Optimizers like Adam incorporate limi… (see more)ted curvature information by employing the diagonal matrix preconditioning of the stochastic gradient during the training. Despite their widespread, second-order optimization algorithms exhibit superior convergence properties compared to their first-order counterparts e.g. Adam and SGD. However, their practicality in training DNNs are still limited due to increased per-iteration computations and suboptimal accuracy compared to the first order methods. We present AdaFisher--an adaptive second-order optimizer that leverages a block-diagonal approximation to the Fisher information matrix for adaptive gradient preconditioning. AdaFisher aims to bridge the gap between enhanced convergence capabilities and computational efficiency in second-order optimization framework for training DNNs. Despite the slow pace of second-order optimizers, we showcase that AdaFisher can be reliably adopted for image classification, language modelling and stand out for its stability and robustness in hyperparameter tuning. We demonstrate that AdaFisher outperforms the SOTA optimizers in terms of both accuracy and convergence speed. Code available from \href{https://github.com/AtlasAnalyticsLab/AdaFisher}{https://github.com/AtlasAnalyticsLab/AdaFisher}
Celo: Training Versatile Learned Optimizers on a Compute Diet
Abhinav Moudgil
Boris Knyazev
Learned optimization has emerged as a promising alternative to hand-crafted optimizers, with the potential to discover stronger learned upda… (see more)te rules that enable faster, hyperparameter-free training of neural networks. A critical element for practically useful learned optimizers, that can be used off-the-shelf after meta-training, is strong meta-generalization: the ability to apply the optimizers to new tasks. Recent state-of-the-art work in learned optimizers, VeLO (Metz et al., 2022), requires a large number of highly diverse meta-training tasks along with massive computational resources, 4000 TPU months, to achieve meta-generalization. This makes further improvements to such learned optimizers impractical. In this work, we identify several key elements in learned optimizer architectures and meta-training procedures that can lead to strong meta-generalization. We also propose evaluation metrics to reliably assess quantitative performance of an optimizer at scale on a set of evaluation tasks. Our proposed approach, Celo, makes a significant leap in improving the meta-generalization performance of learned optimizers and also outperforms tuned state-of-the-art optimizers on a diverse set of out-of-distribution tasks, despite being meta-trained for just 24 GPU hours.
Learning Versatile Optimizers on a Compute Diet
Abhinav Moudgil
Boris Knyazev
Learned optimization has emerged as a promising alternative to hand-crafted optimizers, with the potential to discover stronger learned upda… (see more)te rules that enable faster, hyperparameter-free training of neural networks. A critical element for practically useful learned optimizers, that can be used off-the-shelf after meta-training, is strong meta-generalization: the ability to apply the optimizers to new tasks. Recent state-of-the-art work in learned optimizers, VeLO (Metz et al., 2022), requires a large number of highly diverse meta-training tasks along with massive computational resources, 4000 TPU months, to achieve meta-generalization. This makes further improvements to such learned optimizers impractical. In this work, we identify several key elements in learned optimizer architectures and meta-training procedures that can lead to strong meta-generalization. We also propose evaluation metrics to reliably assess quantitative performance of an optimizer at scale on a set of evaluation tasks. Our proposed approach, Celo, makes a significant leap in improving the meta-generalization performance of learned optimizers and also outperforms tuned state-of-the-art optimizers on a diverse set of out-of-distribution tasks, despite being meta-trained for just 24 GPU hours.
Learning Versatile Optimizers on a Compute Diet
Abhinav Moudgil
Boris Knyazev
Learned optimization has emerged as a promising alternative to hand-crafted optimizers, with the potential to discover stronger learned upda… (see more)te rules that enable faster, hyperparameter-free training of neural networks. A critical element for practically useful learned optimizers, that can be used off-the-shelf after meta-training, is strong meta-generalization: the ability to apply the optimizers to new tasks. Recent state-of-the-art work in learned optimizers, VeLO (Metz et al., 2022), requires a large number of highly diverse meta-training tasks along with massive computational resources, 4000 TPU months, to achieve meta-generalization. This makes further improvements to such learned optimizers impractical. In this work, we identify several key elements in learned optimizer architectures and meta-training procedures that can lead to strong meta-generalization. We also propose evaluation metrics to reliably assess quantitative performance of an optimizer at scale on a set of evaluation tasks. Our proposed approach, Celo, makes a significant leap in improving the meta-generalization performance of learned optimizers and also outperforms tuned state-of-the-art optimizers on a diverse set of out-of-distribution tasks, despite being meta-trained for just 24 GPU hours.
Meta-learning Optimizers for Communication-Efficient Learning
Charles-Étienne Joseph
Benjamin Thérien
Abhinav Moudgil
Boris Knyazev
PETRA: Parallel End-to-end Training with Reversible Architectures
Stephane Rivaud
Louis Fournier
Thomas Pumir
Michael Eickenberg
Edouard Oyallon
Reversible architectures have been shown to be capable of performing on par with their non-reversible architectures, being applied in deep l… (see more)earning for memory savings and generative modeling. In this work, we show how reversible architectures can solve challenges in parallelizing deep model training. We introduce PETRA, a novel alternative to backpropagation for parallelizing gradient computations. PETRA facilitates effective model parallelism by enabling stages (i.e., a set of layers) to compute independently on different devices, while only needing to communicate activations and gradients between each other. By decoupling the forward and backward passes and keeping a single updated version of the parameters, the need for weight stashing is also removed. We develop a custom autograd-like training framework for PETRA, and we demonstrate its effectiveness on CIFAR-10, ImageNet32, and ImageNet, achieving competitive accuracies comparable to backpropagation using ResNet-18, ResNet-34, and ResNet-50 models.
Non-Uniform Parameter-Wise Model Merging
Albert Manuel Orozco Camacho
Stefan Horoi
Combining multiple machine learning models has long been a technique for enhancing performance, particularly in distributed settings. Tradit… (see more)ional approaches, such as model ensembles, work well, but are expensive in terms of memory and compute. Recently, methods based on averaging model parameters have achieved good results in some settings and have gained popularity. However, merging models initialized differently that do not share a part of their training trajectories can yield worse results than simply using the base models, even after aligning their neurons. In this paper, we introduce a novel approach, Non-uniform Parameter-wise Model Merging, or NP Merge, which merges models by learning the contribution of each parameter to the final model using gradient-based optimization. We empirically demonstrate the effectiveness of our method for merging models of various architectures in multiple settings, outperforming past methods. We also extend NP Merge to handle the merging of multiple models, showcasing its scalability and robustness.
Non-Uniform Parameter-Wise Model Merging
Albert Manuel Orozco Camacho
Stefan Horoi
Combining multiple machine learning models has long been a technique for enhancing performance, particularly in distributed settings. Tradit… (see more)ional approaches, such as model ensembles, work well, but are expensive in terms of memory and compute. Recently, methods based on averaging model parameters have achieved good results in some settings and have gained popularity. However, merging models initialized differently that do not share a part of their training trajectories can yield worse results than simply using the base models, even after aligning their neurons. In this paper, we introduce a novel approach, Non-uniform Parameter-wise Model Merging, or NP Merge, which merges models by learning the contribution of each parameter to the final model using gradient-based optimization. We empirically demonstrate the effectiveness of our method for merging models of various architectures in multiple settings, outperforming past methods. We also extend NP Merge to handle the merging of multiple models, showcasing its scalability and robustness.