Publications

AI for Global Climate Cooperation: Modeling Global Climate Negotiations, Agreements, and Long-Term Cooperation in RICE-N
Andrew Robert Williams
Phillip Wozny
Kai-Hendrik Cohrs
Koen Ponse
Soham Rajesh Phade
Sunil Srinivasa
Li Li
Yang Zhang
Prateek Gupta
Erman Acar
Stephan Zheng
Global cooperation on climate change mitigation is essential to limit temperature increases while supporting long-term, equitable economic g… (voir plus)rowth and sustainable development. Achieving such cooperation among diverse regions, each with different incentives, in a dynamic environment shaped by complex geopolitical and economic factors, without a central authority, is a profoundly challenging game-theoretic problem. This article introduces RICE-N, a multi-region integrated assessment model that simulates the global climate, economy, and climate negotiations and agreements. RICE-N uses multi-agent reinforcement learning (MARL) to encourage agents to develop strategic behaviors based on the environmental dynamics and the actions of the others. We present two negotiation protocols: (1) Bilateral Negotiation, an exemplary protocol and (2) Basic Club, inspired from Climate Clubs and the carbon border adjustment mechanism (Nordhaus, 2015; Comissions, 2022). We compare their impact against a no-negotiation baseline with various mitigation strategies, showing that both protocols significantly reduce temperature growth at the cost of a minor drop in production while ensuring a more equitable distribution of the emission reduction costs.
From Language Models over Tokens to Language Models over Characters
Tim Vieira
Mario Giulianelli
Juan Luis Gastaldi
Brian DuSell
John Terilla
Ryan Cotterell
Modern language models are internally—and mathematically—distributions over *token* strings rather than *character* strings, posing nume… (voir plus)rous challenges for programmers building user applications on top of them. For example, if a prompt is specified as a character string, it must be tokenized before passing it to the token-level language model. Thus, the tokenizer and consequent processing are very sensitive to the specification of the prompt (e.g., whether the prompt ends with a space or not). This paper presents algorithms for converting token-level language models to character-level ones. We present both exact and approximate algorithms. In the empirical portion of the paper, we benchmark the practical runtime and approximation quality. Across four publicly available language models, we find that—even with a small computation budget—our method is able to accurately approximate the character-level distribution at reasonably fast speeds, and that a significant improvement in the language model's compression rate (bits/byte) is achieved.
From Language Models over Tokens to Language Models over Characters
Tim Vieira
Mario Giulianelli
Juan Luis Gastaldi
Brian DuSell
John Anthony Terilla
Timothy J. O’Donnell
Ryan Cotterell
Modern language models are internally—and mathematically—distributions over token strings rather than character string… (voir plus)s, posing numerous challenges for programmers building user applications on top of them. For example, if a prompt is specified as a character string, it must be tokenized before passing it to the token-level language model. Thus, the tokenizer and consequent processing are very sensitive to the specification of the prompt (e.g., whether the prompt ends with a space or not). This paper presents algorithms for converting token-level language models to character-level ones. We present both exact and approximate algorithms. In the empirical portion of the paper, we benchmark the practical runtime and approximation quality. Across four publicly available language models, we find that—even with a small computation budget—our method is able to accurately approximate the character-level distribution at reasonably fast speeds, and that a significant improvement in the language model’s compression rate (bits/byte) is achieved.
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
Anthony Fuller
Henry Herzog
Patrick Beukema
Favyen Bastani
James R Green
Evan Shelhamer
Hannah Kerner
We introduce a highly multimodal transformer to represent many remote sensing modalities - multispectral optical, synthetic aperture radar, … (voir plus)elevation, weather, pseudo-labels, and more - across space and time. These inputs are useful for diverse remote sensing tasks, such as crop mapping and flood detection. However, learning shared representations of remote sensing data is challenging, given the diversity of relevant data modalities, and because objects of interest vary massively in scale, from small boats (1-2 pixels and fast) to glaciers (thousands of pixels and slow). We present a novel self-supervised learning algorithm that extracts multi-scale features across a flexible set of input modalities through masked modeling. Our dual global and local contrastive losses differ in their targets (deep representations vs. shallow input projections) and masking strategies (structured vs. not). Our Galileo is a single generalist model that outperforms SoTA specialist models for satellite images and pixel time series across eleven benchmarks and multiple tasks.
Generalization Bounds via Meta-Learned Model Representations: PAC-Bayes and Sample Compression Hypernetworks
Both PAC-Bayesian and Sample Compress learning frameworks have been shown instrumental for deriving tight (non-vacuous) generalization bound… (voir plus)s for neural networks. We leverage these results in a meta-learning scheme, relying on a hypernetwork that outputs the parameters of a downstream predictor from a dataset input. The originality of our approach lies in the investigated hypernetwork architectures that encode the dataset before decoding the parameters: (1) a PAC-Bayesian encoder that expresses a posterior distribution over a latent space, (2) a Sample Compress encoder that selects a small sample of the dataset input along with a message from a discrete set, and (3) a hybrid between both approaches motivated by a new Sample Compress theorem handling continuous messages. The latter theorem exploits the pivotal information transiting at the encoder-decoder junction in order to compute generalization guarantees for each downstream predictor obtained by our meta-learning scheme.
Generalization Bounds via Meta-Learned Model Representations: PAC-Bayes and Sample Compression Hypernetworks
Both PAC-Bayesian and Sample Compress learning frameworks have been shown instrumental for deriving tight (non-vacuous) generalization bound… (voir plus)s for neural networks. We leverage these results in a meta-learning scheme, relying on a hypernetwork that outputs the parameters of a downstream predictor from a dataset input. The originality of our approach lies in the investigated hypernetwork architectures that encode the dataset before decoding the parameters: (1) a PAC-Bayesian encoder that expresses a posterior distribution over a latent space, (2) a Sample Compress encoder that selects a small sample of the dataset input along with a message from a discrete set, and (3) a hybrid between both approaches motivated by a new Sample Compress theorem handling continuous messages. The latter theorem exploits the pivotal information transiting at the encoder-decoder junction in order to compute generalization guarantees for each downstream predictor obtained by our meta-learning scheme.
Generalized Random Forests using Fixed-Point Trees
David L. Fleischer
David A. Stephens
We propose a computationally efficient alternative to generalized random forests arXiv:1610.01271 (GRFs) for estimating heterogeneous effect… (voir plus)s in large dimensions. While GRFs rely on a gradient-based splitting criterion, which in large dimensions is computationally expensive and unstable, our method introduces a fixed-point approximation that eliminates the need for Jacobian estimation. This gradient-free approach preserves GRFs theoretical guarantees of consistency and asymptotic normality while significantly improving computational efficiency. We demonstrate that our method achieves multiple times the speed over standard GRFs without compromising statistical accuracy. Experiments on both simulated and real-world data, validate our approach. Our findings suggest that the proposed method is a scalable alternative for localized effect estimation in machine learning and causal inference applications.
Generalized Random Forests Using Fixed-Point Trees
David A. Stephens
Archer Y. Yang
We propose a computationally efficient alternative to generalized random forests (GRFs) for estimating heterogeneous effects in large dimens… (voir plus)ions. While GRFs rely on a gradient-based splitting criterion, which in large dimensions is computationally expensive and unstable, our method introduces a fixed-point approximation that eliminates the need for Jacobian estimation. This gradient-free approach preserves GRF’s theoretical guarantees of consistency and asymptotic normality while significantly improving computational efficiency. We demonstrate that our method achieves a speedup of multiple times over standard GRFs without compromising statistical accuracy. Experiments on both simulated and real-world data validate our approach. Our findings suggest that the proposed method is a scalable alternative for localized effect estimation in machine learning and causal inference applications.
GRAIL: Graph Edit Distance and Node Alignment using LLM-Generated Code
Samidha Verma
Arushi Goyal
Ananya Mathur
Sayan Ranu
Graph Edit Distance (GED) is a widely used metric for measuring similarity between two graphs. Computing the optimal GED is NP-hard, leading… (voir plus) to the development of various neural and non-neural heuristics. While neural methods have achieved improved approximation quality compared to non-neural approaches, they face significant challenges: (1) They require large amounts of ground truth data, which is itself NP-hard to compute. (2) They operate as black boxes, offering limited interpretability. (3) They lack cross-domain generalization, necessitating expensive retraining for each new dataset. We address these limitations with GRAIL, introducing a paradigm shift in this domain. Instead of training a neural model to predict GED, GRAIL employs a novel combination of large language models (LLMs) and automated prompt tuning to generate a program that is used to compute GED. This shift from predicting GED to generating programs imparts various advantages, including end-to-end interpretability and an autonomous self-evolutionary learning mechanism without ground-truth supervision. Extensive experiments on seven datasets confirm that GRAIL not only surpasses state-of-the-art GED approximation methods in prediction quality but also achieves robust cross-domain generalization across diverse graph distributions.
GRAIL: Graph Edit Distance and Node Alignment using LLM-Generated Code
Samidha Verma
Arushi Goyal
Ananya Mathur
Sayan Ranu
Graph Edit Distance (GED) is a widely used metric for measuring similarity between two graphs. Computing the optimal GED is NP-hard, leading… (voir plus) to the development of various neural and non-neural heuristics. While neural methods have achieved improved approximation quality compared to non-neural approaches, they face significant challenges: (1) They require large amounts of ground truth data, which is itself NP-hard to compute. (2) They operate as black boxes, offering limited interpretability. (3) They lack cross-domain generalization, necessitating expensive retraining for each new dataset. We address these limitations with GRAIL, introducing a paradigm shift in this domain. Instead of training a neural model to predict GED, GRAIL employs a novel combination of large language models (LLMs) and automated prompt tuning to generate a program that is used to compute GED. This shift from predicting GED to generating programs imparts various advantages, including end-to-end interpretability and an autonomous self-evolutionary learning mechanism without ground-truth supervision. Extensive experiments on seven datasets confirm that GRAIL not only surpasses state-of-the-art GED approximation methods in prediction quality but also achieves robust cross-domain generalization across diverse graph distributions.
Grokking Beyond the Euclidean Norm of Model Parameters
Tikeng Notsawo Pascal Junior
Pascal Notsawo
Grokking refers to a delayed generalization following overfitting when optimizing artificial neural networks with gradient-based methods. I… (voir plus)n this work, we demonstrate that grokking can be induced by regularization, either explicit or implicit. More precisely, we show that when there exists a model with a property
Grokking Beyond the Euclidean Norm of Model Parameters
Tikeng Notsawo Pascal Junior
Grokking refers to a delayed generalization following overfitting when optimizing artificial neural networks with gradient-based methods. In… (voir plus) this work, we demonstrate that grokking can be induced by regularization, either explicit or implicit. More precisely, we show that when there exists a model with a property