Portrait of Adam Tupper

Adam Tupper

PhD - Université Laval
Supervisor
Research Topics
Computer Vision
Deep Learning
Medical Machine Learning

Publications

Personalized Federated Fine-Tuning of Vision Foundation Models for Healthcare
Foundation models open up new possibilities for the use of AI in healthcare. However, even when pre-trained on health data, they still need … (see more)to be fine-tuned for specific downstream tasks. Furthermore, although foundation models reduce the amount of training data required to achieve good performance, obtaining sufficient data is still a challenge. This is due, in part, to restrictions on sharing and aggregating data from different sources to protect patients'privacy. One possible solution to this is to fine-tune foundation models via federated learning across multiple participating clients (i.e., hospitals, clinics, etc.). In this work, we propose a new personalized federated fine-tuning method that learns orthogonal LoRA adapters to disentangle general and client-specific knowledge, enabling each client to fully exploit both their own data and the data of others. Our preliminary results on real-world federated medical imaging tasks demonstrate that our approach is competitive against current federated fine-tuning methods.
Personalized Federated Fine-Tuning of Vision Foundation Models for Healthcare
Revisiting Data Augmentation for Ultrasound Images
Data augmentation is a widely used and effective technique to improve the generalization performance of deep neural networks. Yet, despite o… (see more)ften facing limited data availability when working with medical images, it is frequently underutilized. This appears to come from a gap in our collective understanding of the efficacy of different augmentation techniques across different tasks and modalities. One modality where this is especially true is ultrasound imaging. This work addresses this gap by analyzing the effectiveness of different augmentation techniques at improving model performance across a wide range of ultrasound image analysis tasks. To achieve this, we introduce a new standardized benchmark of 14 ultrasound image classification and semantic segmentation tasks from 10 different sources and covering 11 body regions. Our results demonstrate that many of the augmentations commonly used for tasks on natural images are also effective on ultrasound images, even more so than augmentations developed specifically for ultrasound images in some cases. We also show that diverse augmentation using TrivialAugment, which is widely used for natural images, is also effective for ultrasound images. Moreover, our proposed methodology represents a structured approach for assessing various data augmentations that can be applied to other contexts and modalities.
Revisiting Data Augmentation for Ultrasound Images
Data augmentation is a widely used and effective technique to improve the generalization performance of deep neural networks. Yet, despite o… (see more)ften facing limited data availability when working with medical images, it is frequently underutilized. This appears to come from a gap in our collective understanding of the efficacy of different augmentation techniques across different tasks and modalities. One modality where this is especially true is ultrasound imaging. This work addresses this gap by analyzing the effectiveness of different augmentation techniques at improving model performance across a wide range of ultrasound image analysis tasks. To achieve this, we introduce a new standardized benchmark of 14 ultrasound image classification and semantic segmentation tasks from 10 different sources and covering 11 body regions. Our results demonstrate that many of the augmentations commonly used for tasks on natural images are also effective on ultrasound images, even more so than augmentations developed specifically for ultrasound images in some cases. We also show that diverse augmentation using TrivialAugment, which is widely used for natural images, is also effective for ultrasound images. Moreover, our proposed methodology represents a structured approach for assessing various data augmentations that can be applied to other contexts and modalities.
Analyzing Data Augmentation for Medical Images: A Case Study in Ultrasound Images
Data augmentation is one of the most effective techniques to improve the generalization performance of deep neural networks. Yet, despite of… (see more)ten facing limited data availability in medical image analysis, it is frequently underutilized. This appears to be due to a gap in our collective understanding of the efficacy of different augmentation techniques across medical imaging tasks and modalities. One domain where this is especially true is breast ultrasound images. This work addresses this issue by analyzing the effectiveness of different augmentation techniques for the classification of breast lesions in ultrasound images. We assess the generalizability of our findings across several datasets, demonstrate that certain augmentations are far more effective than others, and show that their usage leads to significant performance gains.