Portrait of Loubna Benabbou

Loubna Benabbou

Affiliate Member
UQAR
Research Topics
Deep Learning
Machine Learning Theory
Optimization

Publications

Longitudinal bi-criteria framework for assessing national healthcare responses to pandemic outbreaks
Adel Guitouni
Nabil Belacel
Belaid Moa
Munire Erman
Halim Abdul
Deep learning based vessel arrivals monitoring via autoregressive statistical control charts
Sara El Mekkaoui
Ghait Boukachab
Abdelaziz Berrado
Deep learning based vessel arrivals monitoring via autoregressive statistical control charts
Sara El Mekkaoui
Ghait Boukachab
Abdelaziz Berrado
Towards a framework selection for assessing the performance of photovoltaic solar power plants: criteria determination
Meryam Chafiq
Ismail Belhaj
Abdelali Djdiaa
Hicham Bouzekri
Abdelaziz Berrado
Mastery of Key Performance Indicators (KPIs) in the realm of photovoltaic solar power plants is pivotal for evaluating their effectiveness a… (see more)nd fine-tuning their operational efficiency. The assessment of these plants' performance has con-sistently stood as a focal point in scientific research. Nevertheless, the investigation into the process of selecting a framework for classifying KPIs, particularly through their categorization based on criteria, sub-criteria, or aspects, has been relatively limited in research. This article addresses this gap by conducting a comprehensive literature review on various KPIs and, drawing upon both literature and practical experience, formulating a set of criteria to serve as the foundation for a Multi-Criteria Decision Analysis (MCDA) method. This intricate taxonomic framework enhances the understanding of infrastructure performance for stakeholders in the solar industry. By streamlining decision-making, it simplifies the selection of KPIs tailored to specific requirements, thus mitigating the complexity arising from the abundance of KPIs in the literature. As a result, decision-makers can make well-informed choices regarding the monitoring and evaluation framework that best suits the performance goals of their solar plant.
Towards a connection between the capacitated vehicle routing problem and the constrained centroid-based clustering
Abdelhakim Abdellaoui
Issmail ElHallaoui
Efficiently solving a vehicle routing problem (VRP) in a practical runtime is a critical challenge for delivery management companies. This p… (see more)aper explores both a theoretical and experimental connection between the Capacitated Vehicle Routing Problem (CVRP) and the Constrained Centroid-Based Clustering (CCBC). Reducing a CVRP to a CCBC is a synonym for a transition from an exponential to a polynomial complexity using commonly known algorithms for clustering, i.e K-means. At the beginning, we conduct an exploratory analysis to highlight the existence of such a relationship between the two problems through illustrative small-size examples and simultaneously deduce some mathematically-related formulations and properties. On a second level, the paper proposes a CCBC based approach endowed with some enhancements. The proposed framework consists of three stages. At the first step, a constrained centroid-based clustering algorithm generates feasible clusters of customers. This methodology incorporates three enhancement tools to achieve near-optimal clusters, namely: a multi-start procedure for initial centroids, a customer assignment metric, and a self-adjustment mechanism for choosing the number of clusters. At the second step, a traveling salesman problem (T SP) solver is used to optimize the order of customers within each cluster. Finally, we introduce a process relying on routes cutting and relinking procedure, which calls upon solving a linear and integer programming model to further improve the obtained routes. This step is inspired by the ruin&recreate algorithm. This approach is an extension of the classical cluster-first, route-second method and provides near-optimal solutions on well-known benchmark instances in terms of solution quality and computational runtime, offering a milestone in solving VRP.
An Analytic Hierarchy Process based approach for assessing the performance of photovoltaic solar power plants
Meryam Chafiq
Ismail Belhaj
Abdelali Djdiaa
Hicham Bouzekri
Abdelaziz Berrado
Generative Adversarial Neural Networks for Realistic Stock Market Simulations
Badre Labiad
Abdelaziz Berrado
—Stock market simulations are widely used to create synthetic environments for testing trading strategies before deploying them to real-ti… (see more)me markets. However, the weak realism often found in these simulations presents a significant challenge. Improving the quality of stock market simulations could be facilitated by the availability of rich and granular real Limit Order Books (LOB) data. Unfortunately, access to LOB data is typically very limited. To address this issue, a framework based on Generative Adversarial Networks (GAN) is proposed to generate synthetic realistic LOB data. This generated data can then be utilized for simulating downstream decision-making tasks, such as testing trading strategies, conducting stress tests, and performing prediction tasks. To effectively tackle challenges related to the temporal and local dependencies inherent in LOB structures and to generate highly realistic data, the framework relies on a specific data representation and preprocessing scheme, transformers, and conditional Wasserstein GAN with gradient penalty. The framework is trained using the FI-2010 benchmark dataset and an ablation study is conducted to demonstrate the importance of each component of the proposed framework. Moreover, qualitative and quantitative metrics are proposed to assess the quality of the generated data. Experimental results indicate that the framework outperforms existing benchmarks in simulating realistic market conditions, thus demonstrating its effectiveness in generating synthetic LOB data for diverse downstream tasks.
Deep Learning Model for Multi-Step Ahead Prediction of Solar Irradiance: Case of Study of Morocco
Saad Benbrahim
Ismail Belhaj
Abdelali Djdiaa
Hicham Bouzekri
Abdelaziz Berrado
Accurate solar irradiance forecasting is crucial for managing energy generation and consumption in the rapidly evolving landscape of renewab… (see more)le energy. It enables renewable energy operators to make informed decisions and maximize their output. This study employs deep learning-based forecasting models to predict the Global Horizontal Irradiance (GHI) of the R&D platform situated in Ouarzazate, Morocco. A sensitivity analysis was conducted on multiple scenarios for a one day-ahead horizon. Moreover, a forecasting technique that encompasses numerous horizons, ranging from one day to three days in advance, was evaluated. The study's findings suggest that the encoder-decoder model we proposed exhibited superior performance compared to the other models tested and produced dependable predictions.
Towards an Effective Electrical Market Design: Identifying and Defining Key Criteria for Decision-Making
Souhaila Chiguer
Ismail Belhaj
Abdelali Djdiaa
Hicham Bouzekri
Abdelaziz Berrado
In our changing energy landscape, electricity is taking a major role in achieving decarbonization goals. Electricity can be a clean and effi… (see more)cient source of energy, and it is well-suited to help countries meet their climate goals. However, the electrical market is complex and constantly evolving, and it is important to carefully choose the design elements of the market to ensure that it is meeting its objectives. In this context, evaluating an electrical market's effectiveness requires a multifaceted approach that takes into account a range of elements, from environmental impact to economic viability. This paper provides an overview of several evaluation methods for different objectives to finally select the key criteria to consider in assisting decision-makers, regulators, and stakeholders in developing an electricity market that is not only effective but also reliable and sustainable.
Predicting Solar PV Output Based on Hybrid Deep Learning and Physical
Models: Case Study of Morocco
Samira Abousaid
Ismail Belhaj
Abdelaziz Berrado
Hicham Bouzekri
Improving *day-ahead* Solar Irradiance Time Series Forecasting by Leveraging Spatio-Temporal Context
Oussama Boussif
Ghait Boukachab
Dan Assouline
Stefano Massaroli
Tianle Yuan
Solar power harbors immense potential in mitigating climate change by substantially reducing CO…
What if We Enrich day-ahead Solar Irradiance Time Series Forecasting with Spatio-Temporal Context?
Oussama Boussif
Ghait Boukachab
Dan Assouline
Stefano Massaroli
Tianle Yuan
The global integration of solar power into the electrical grid could have a crucial impact on climate change mitigation, yet poses a challen… (see more)ge due to solar irradiance variability. We present a deep learning architecture which uses spatio-temporal context from satellite data for highly accurate day-ahead time-series forecasting, in particular Global Horizontal Irradiance (GHI). We provide a multi-quantile variant which outputs a prediction interval for each time-step, serving as a measure of forecasting uncertainty. In addition, we suggest a testing scheme that separates easy and difficult scenarios, which appears useful to evaluate model performance in varying cloud conditions. Our approach exhibits robust performance in solar irradiance forecasting, including zero-shot generalization tests at unobserved solar stations, and holds great promise in promoting the effective use of solar power and the resulting reduction of CO