This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Accurate modeling of physical systems governed by partial differential equations is a central challenge in scientific computing. In oceanogr… (see more)aphy, high-resolution current data are critical for coastal management, environmental monitoring, and maritime safety. However, available satellite products, such as Copernicus data for sea water velocity at ~0.08 degrees spatial resolution and global ocean models, often lack the spatial granularity required for detailed local analyses. In this work, we (a) introduce a supervised deep learning framework based on neural operators for solving PDEs and providing arbitrary resolution solutions, and (b) propose downscaling models with an application to Copernicus ocean current data. Additionally, our method can model surrogate PDEs and predict solutions at arbitrary resolution, regardless of the input resolution. We evaluated our model on real-world Copernicus ocean current data and synthetic Navier-Stokes simulation datasets.
Accurate modeling of physical systems governed by partial differential equations is a central challenge in scientific computing. In oceanogr… (see more)aphy, high-resolution current data are critical for coastal management, environmental monitoring, and maritime safety. However, available satellite products, such as Copernicus data for sea water velocity at ~0.08 degrees spatial resolution and global ocean models, often lack the spatial granularity required for detailed local analyses. In this work, we (a) introduce a supervised deep learning framework based on neural operators for solving PDEs and providing arbitrary resolution solutions, and (b) propose downscaling models with an application to Copernicus ocean current data. Additionally, our method can model surrogate PDEs and predict solutions at arbitrary resolution, regardless of the input resolution. We evaluated our model on real-world Copernicus ocean current data and synthetic Navier-Stokes simulation datasets.
Pandemics like COVID-19 have illuminated the significant disparities in the performance of national healthcare systems (NHCSs) during rapidl… (see more)y evolving crises. The challenge of comparing NHCS performance has been a difficult topic in the literature. To address this gap, our study introduces a bi-criteria longitudinal algorithm that merges fuzzy clustering with Data Envelopment Analysis (DEA). This new approach provides a comprehensive and dynamic assessment of NHCS performance and efficiency during the early phase of the pandemic. By categorizing each NHCS as an efficient performer, inefficient performer, efficient underperformer, or inefficient underperformer, our analysis vividly represents performance dynamics, clearly identifying the top and bottom performers within each cluster of countries. Our methodology offers valuable insights for performance evaluation and benchmarking, with significant implications for enhancing pandemic response strategies. The study’s findings are discussed from theoretical and practical perspectives, offering guidance for future health system assessments and policy-making.