Portrait of Ling Pan is unavailable

Ling Pan

Alumni

Publications

Random Policy Evaluation Uncovers Policies of Generative Flow Networks
Haoran He
Qingpeng Cai
The Generative Flow Network (GFlowNet) is a probabilistic framework in which an agent learns a stochastic policy and flow functions to sampl… (see more)e objects with probability proportional to an unnormalized reward function. GFlowNets share a strong connection with reinforcement learning (RL) that typically aims to maximize reward. A number of recent works explored connections between GFlowNets and maximum entropy (MaxEnt) RL, which incorporates entropy regularization into the standard RL objective. However, the relationship between GFlowNets and standard RL remains largely unexplored, despite the inherent similarities in their sequential decision-making nature. While GFlowNets can discover diverse solutions through specialized flow-matching objectives, connecting them to standard RL can simplify their implementation through well-established RL principles and also improve RL’s capabilities in diverse solution discovery (a critical requirement in many real-world applications), and bridging this gap can further unlock the potential of both fields. In this paper, we bridge this gap by revealing a fundamental connection between GFlowNets and one of the most basic components of RL – policy evaluation. Surprisingly, we find that the value function obtained from evaluating a uniform policy is closely associated with the flow functions in GFlowNets. Building upon these insights, we introduce a rectified random policy evaluation (RPE) algorithm, which achieves the same reward-matching effect as GFlowNets based on simply evaluating a fixed random policy, offering a new perspective. Empirical results across extensive benchmarks demonstrate that RPE achieves competitive results compared to previous approaches, shedding light on the previously overlooked connection between (non-MaxEnt) RL and GFlowNets.
Random Policy Evaluation Uncovers Policies of Generative Flow Networks
Haoran He
Qingpeng Cai 0001
The Courage to Stop: Overcoming Sunk Cost Fallacy in Deep Reinforcement Learning
Off-policy deep reinforcement learning (RL) typically leverages replay buffers for reusing past experiences during learning. This can help i… (see more)mprove sample efficiency when the collected data is informative and aligned with the learning objectives; when that is not the case, it can have the effect of"polluting"the replay buffer with data which can exacerbate optimization challenges in addition to wasting environment interactions due to wasteful sampling. We argue that sampling these uninformative and wasteful transitions can be avoided by addressing the sunk cost fallacy, which, in the context of deep RL, is the tendency towards continuing an episode until termination. To address this, we propose learn to stop (LEAST), a lightweight mechanism that enables strategic early episode termination based on Q-value and gradient statistics, which helps agents recognize when to terminate unproductive episodes early. We demonstrate that our method improves learning efficiency on a variety of RL algorithms, evaluated on both the MuJoCo and DeepMind Control Suite benchmarks.
The Courage to Stop: Overcoming Sunk Cost Fallacy in Deep Reinforcement Learning
Off-policy deep reinforcement learning (RL) agents typically leverage replay buffers for reusing past experiences during learning. This can … (see more)help sample efficiency when the collected data is informative and aligned with the learning objectives; when that is not the case, it has the effect of “polluting” the replay buffer with data that can exacerbate optimization challenges in addition to wasting environment interactions due to redundant sampling. We argue that sampling these uninformative and wasteful transitions can be avoided by addressing the sunk cost fallacy which, in the context of deep RL, is the tendency towards continuing an episode until termination. To address this, we propose the learn to stop (LEAST) mechanism which uses statistics based on
Asymmetric Proximal Policy Optimization: mini-critics boost LLM reasoning
Jiashun Liu
Johan S. Obando-Ceron
Han Lu
Yancheng He
Weixun Wang
Wenbo Su
Bo Zheng
Most recent RL for LLMs (RL4LLM) methods avoid explicit critics, replacing them with average advantage baselines. This shift is largely prag… (see more)matic: conventional value functions are computationally expensive to train at LLM scale and often fail under sparse rewards and long reasoning horizons. We revisit this bottleneck from an architectural perspective and introduce Asymmetric Proximal Policy Optimization (AsyPPO), a simple and scalable framework that restores the critics role while remaining efficient in large-model settings. AsyPPO employs a set of lightweight mini-critics, each trained on disjoint prompt shards. This design encourages diversity while preserving calibration, reducing value-estimation bias. Beyond robust estimation, AsyPPO leverages inter-critic uncertainty to refine the policy update: (i) masking advantages in states where critics agree and gradients add little learning signal, and (ii) filtering high-divergence states from entropy regularization, suppressing spurious exploration. After training on open-source data with only 5,000 samples, AsyPPO consistently improves learning stability and performance across multiple benchmarks over strong baselines, such as GRPO, achieving performance gains of more than six percent on Qwen3-4b-Base and about three percent on Qwen3-8b-Base and Qwen3-14b-Base over classic PPO, without additional tricks. These results highlight the importance of architectural innovations for scalable, efficient algorithms.
Asymmetric Proximal Policy Optimization: mini-critics boost LLM reasoning
Jiashun Liu
Johan S. Obando-Ceron
Han Lu
Yancheng He
Weixun Wang
Wenbo Su
Bo Zheng
Most recent RL for LLMs (RL4LLM) methods avoid explicit critics, replacing them with average advantage baselines. This shift is largely prag… (see more)matic: conventional value functions are computationally expensive to train at LLM scale and often fail under sparse rewards and long reasoning horizons. We revisit this bottleneck from an architectural perspective and introduce Asymmetric Proximal Policy Optimization (AsyPPO), a simple and scalable framework that restores the critics role while remaining efficient in large-model settings. AsyPPO employs a set of lightweight mini-critics, each trained on disjoint prompt shards. This design encourages diversity while preserving calibration, reducing value-estimation bias. Beyond robust estimation, AsyPPO leverages inter-critic uncertainty to refine the policy update: (i) masking advantages in states where critics agree and gradients add little learning signal, and (ii) filtering high-divergence states from entropy regularization, suppressing spurious exploration. After training on open-source data with only 5,000 samples, AsyPPO consistently improves learning stability and performance across multiple benchmarks over strong baselines, such as GRPO, achieving performance gains of more than six percent on Qwen3-4b-Base and about three percent on Qwen3-8b-Base and Qwen3-14b-Base over classic PPO, without additional tricks. These results highlight the importance of architectural innovations for scalable, efficient algorithms.
Asymmetric Proximal Policy Optimization: mini-critics boost LLM reasoning
Jiashun Liu
Johan S. Obando-Ceron
Han Lu
Yancheng He
Weixun Wang
Wenbo Su
Bo Zheng
Most recent RL for LLMs (RL4LLM) methods avoid explicit critics, replacing them with average advantage baselines. This shift is largely prag… (see more)matic: conventional value functions are computationally expensive to train at LLM scale and often fail under sparse rewards and long reasoning horizons. We revisit this bottleneck from an architectural perspective and introduce Asymmetric Proximal Policy Optimization (AsyPPO), a simple and scalable framework that restores the critics role while remaining efficient in large-model settings. AsyPPO employs a set of lightweight mini-critics, each trained on disjoint prompt shards. This design encourages diversity while preserving calibration, reducing value-estimation bias. Beyond robust estimation, AsyPPO leverages inter-critic uncertainty to refine the policy update: (i) masking advantages in states where critics agree and gradients add little learning signal, and (ii) filtering high-divergence states from entropy regularization, suppressing spurious exploration. After training on open-source data with only 5,000 samples, AsyPPO consistently improves learning stability and performance across multiple benchmarks over strong baselines, such as GRPO, achieving performance gains of more than six percent on Qwen3-4b-Base and about three percent on Qwen3-8b-Base and Qwen3-14b-Base over classic PPO, without additional tricks. These results highlight the importance of architectural innovations for scalable, efficient algorithms.
Asymmetric Proximal Policy Optimization: mini-critics boost LLM reasoning
Jiashun Liu
Johan S. Obando-Ceron
Han Lu
Yancheng He
Weixun Wang
Wenbo Su
Bo Zheng
Most recent RL for LLMs (RL4LLM) methods avoid explicit critics, replacing them with average advantage baselines. This shift is largely prag… (see more)matic: conventional value functions are computationally expensive to train at LLM scale and often fail under sparse rewards and long reasoning horizons. We revisit this bottleneck from an architectural perspective and introduce Asymmetric Proximal Policy Optimization (AsyPPO), a simple and scalable framework that restores the critics role while remaining efficient in large-model settings. AsyPPO employs a set of lightweight mini-critics, each trained on disjoint prompt shards. This design encourages diversity while preserving calibration, reducing value-estimation bias. Beyond robust estimation, AsyPPO leverages inter-critic uncertainty to refine the policy update: (i) masking advantages in states where critics agree and gradients add little learning signal, and (ii) filtering high-divergence states from entropy regularization, suppressing spurious exploration. After training on open-source data with only 5,000 samples, AsyPPO consistently improves learning stability and performance across multiple benchmarks over strong baselines, such as GRPO, achieving performance gains of more than six percent on Qwen3-4b-Base and about three percent on Qwen3-8b-Base and Qwen3-14b-Base over classic PPO, without additional tricks. These results highlight the importance of architectural innovations for scalable, efficient algorithms.
The Courage to Stop: Overcoming Sunk Cost Fallacy in Deep Reinforcement Learning
Off-policy deep reinforcement learning (RL) typically leverages replay buffers for reusing past experiences during learning. This can help i… (see more)mprove sample efficiency when the collected data is informative and aligned with the learning objectives; when that is not the case, it can have the effect of"polluting"the replay buffer with data which can exacerbate optimization challenges in addition to wasting environment interactions due to wasteful sampling. We argue that sampling these uninformative and wasteful transitions can be avoided by addressing the sunk cost fallacy, which, in the context of deep RL, is the tendency towards continuing an episode until termination. To address this, we propose learn to stop (LEAST), a lightweight mechanism that enables strategic early episode termination based on Q-value and gradient statistics, which helps agents recognize when to terminate unproductive episodes early. We demonstrate that our method improves learning efficiency on a variety of RL algorithms, evaluated on both the MuJoCo and DeepMind Control Suite benchmarks.
The Courage to Stop: Overcoming Sunk Cost Fallacy in Deep Reinforcement Learning
Off-policy deep reinforcement learning (RL) typically leverages replay buffers for reusing past experiences during learning. This can help i… (see more)mprove sample efficiency when the collected data is informative and aligned with the learning objectives; when that is not the case, it can have the effect of"polluting"the replay buffer with data which can exacerbate optimization challenges in addition to wasting environment interactions due to wasteful sampling. We argue that sampling these uninformative and wasteful transitions can be avoided by addressing the sunk cost fallacy, which, in the context of deep RL, is the tendency towards continuing an episode until termination. To address this, we propose learn to stop (LEAST), a lightweight mechanism that enables strategic early episode termination based on Q-value and gradient statistics, which helps agents recognize when to terminate unproductive episodes early. We demonstrate that our method improves learning efficiency on a variety of RL algorithms, evaluated on both the MuJoCo and DeepMind Control Suite benchmarks.
Measure gradients, not activations! Enhancing neuronal activity in deep reinforcement learning
Neuroplastic Expansion in Deep Reinforcement Learning