Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Understanding the optimization dynamics of neural networks is necessary for closing the gap between theory and practice. Stochastic first-or… (see more)der optimization algorithms are known to efficiently locate favorable minima in deep neural networks. This efficiency, however, contrasts with the non-convex and seemingly complex structure of neural loss landscapes. In this study, we delve into the fundamental geometric properties of sampled gradients along optimization paths. We focus on two key quantities, which appear in the restricted secant inequality and error bound. Both hold high significance for first-order optimization. Our analysis reveals that these quantities exhibit predictable, consistent behavior throughout training, despite the stochasticity induced by sampling minibatches. Our findings suggest that not only do optimization trajectories never encounter significant obstacles, but they also maintain stable dynamics during the majority of training. These observed properties are sufficiently expressive to theoretically guarantee linear convergence and prescribe learning rate schedules mirroring empirical practices. We conduct our experiments on image classification, semantic segmentation and language modeling across different batch sizes, network architectures, datasets, optimizers, and initialization seeds. We discuss the impact of each factor. Our work provides novel insights into the properties of neural network loss functions, and opens the door to theoretical frameworks more relevant to prevalent practice.
2024-07-08
Proceedings of the 41st International Conference on Machine Learning (published)
Continuous normalizing flows (CNFs) are an attractive generative modeling technique, but they have been held back by limitations in their si… (see more)mulation-based maximum likelihood training. We introduce the generalized \textit{conditional flow matching} (CFM) technique, a family of simulation-free training objectives for CNFs. CFM features a stable regression objective like that used to train the stochastic flow in diffusion models but enjoys the efficient inference of deterministic flow models. In contrast to both diffusion models and prior CNF training algorithms, CFM does not require the source distribution to be Gaussian or require evaluation of its density. A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference, as evaluated in our experiments. Furthermore, OT-CFM is the first method to compute dynamic OT in a simulation-free way. Training CNFs with CFM improves results on a variety of conditional and unconditional generation tasks, such as inferring single cell dynamics, unsupervised image translation, and Schrödinger bridge inference.
Unsupervised Domain Adaptation (UDA) aims at classifying unlabeled target images leveraging source labeled ones. In the case of an extreme l… (see more)abel shift scenario between the source and target domains, where we have extra source classes not present in the target domain, the UDA problem becomes a harder problem called Partial Domain Adaptation (PDA). While different methods have been developed to solve the PDA problem, most successful algorithms use model selection strategies that rely on target labels to find the best hyper-parameters and/or models along training. These strategies violate the main assumption in PDA: only unlabeled target domain samples are available. In addition, there are also experimental inconsistencies between developed methods - different architectures, hyper-parameter tuning, number of runs - yielding unfair comparisons. The main goal of this work is to provide a realistic evaluation of PDA methods under different model selection strategies and a consistent evaluation protocol. We evaluate 6 state-of-the-art PDA algorithms on 2 different real-world datasets using 7 different model selection strategies. Our two main findings are: (i) without target labels for model selection, the accuracy of the methods decreases up to 30 percentage points; (ii) only one method and model selection pair performs well on both datasets. Experiments were performed with our PyTorch framework, BenchmarkPDA, which we open source.
Ensemble methods combine the predictions of multiple models to improve performance, but they require significantly higher computation costs … (see more)at inference time. To avoid these costs, multiple neural networks can be combined into one by averaging their weights. However, this usually performs significantly worse than ensembling. Weight averaging is only beneficial when different enough to benefit from combining them, but similar enough to average well. Based on this idea, we propose PopulAtion Parameter Averaging (PAPA): a method that combines the generality of ensembling with the efficiency of weight averaging. PAPA leverages a population of diverse models (trained on different data orders, augmentations, and regularizations) while slowly pushing the weights of the networks toward the population average of the weights. We also propose PAPA variants (PAPA-all, and PAPA-2) that average weights rarely rather than continuously; all methods increase generalization, but PAPA tends to perform best. PAPA reduces the performance gap between averaging and ensembling, increasing the average accuracy of a population of models by up to 0.8% on CIFAR-10, 1.9% on CIFAR-100, and 1.6% on ImageNet when compared to training independent (non-averaged) models.
Ensemble methods combine the predictions of multiple models to improve performance, but they require significantly higher computation costs … (see more)at inference time. To avoid these costs, multiple neural networks can be combined into one by averaging their weights. However, this usually performs significantly worse than ensembling. Weight averaging is only beneficial when different enough to benefit from combining them, but similar enough to average well. Based on this idea, we propose PopulAtion Parameter Averaging (PAPA): a method that combines the generality of ensembling with the efficiency of weight averaging. PAPA leverages a population of diverse models (trained on different data orders, augmentations, and regularizations) while slowly pushing the weights of the networks toward the population average of the weights. We also propose PAPA variants (PAPA-all, and PAPA-2) that average weights rarely rather than continuously; all methods increase generalization, but PAPA tends to perform best. PAPA reduces the performance gap between averaging and ensembling, increasing the average accuracy of a population of models by up to 0.8% on CIFAR-10, 1.9% on CIFAR-100, and 1.6% on ImageNet when compared to training independent (non-averaged) models.
Continuous normalizing flows (CNFs) are an attractive generative modeling technique, but they have been held back by limitations in their si… (see more)mulation-based maximum likelihood training. We introduce the generalized conditional flow matching (CFM) technique, a family of simulation-free training objectives for CNFs. CFM features a stable regression objective like that used to train the stochastic flow in diffusion models but enjoys the efficient inference of deterministic flow models. In contrast to both diffusion models and prior CNF training algorithms, CFM does not require the source distribution to be Gaussian or require evaluation of its density. A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference, as evaluated in our experiments. Furthermore, we show that when the true OT plan is available, our OT-CFM method approximates dynamic OT. Training CNFs with CFM improves results on a variety of conditional and unconditional generation tasks, such as inferring single cell dynamics, unsupervised image translation, and Schr\"odinger bridge inference.
Continuous normalizing flows (CNFs) are an attractive generative modeling technique, but they have been held back by limitations in their si… (see more)mulation-based maximum likelihood training. We introduce the generalized conditional flow matching (CFM) technique, a family of simulation-free training objectives for CNFs. CFM features a stable regression objective like that used to train the stochastic flow in diffusion models but enjoys the efficient inference of deterministic flow models. In contrast to both diffusion models and prior CNF training algorithms, CFM does not require the source distribution to be Gaussian or require evaluation of its density. A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference, as evaluated in our experiments. Furthermore, we show that when the true OT plan is available, our OT-CFM method approximates dynamic OT. Training CNFs with CFM improves results on a variety of conditional and unconditional generation tasks, such as inferring single cell dynamics, unsupervised image translation, and Schr\"odinger bridge inference.
Continuous normalizing flows (CNFs) are an attractive generative modeling technique, but they have been held back by limitations in their si… (see more)mulation-based maximum likelihood training. We introduce the generalized conditional flow matching (CFM) technique, a family of simulation-free training objectives for CNFs. CFM features a stable regression objective like that used to train the stochastic flow in diffusion models but enjoys the efficient inference of deterministic flow models. In contrast to both diffusion models and prior CNF training algorithms, CFM does not require the source distribution to be Gaussian or require evaluation of its density. A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference, as evaluated in our experiments. Furthermore, we show that when the true OT plan is available, our OT-CFM method approximates dynamic OT. Training CNFs with CFM improves results on a variety of conditional and unconditional generation tasks, such as inferring single cell dynamics, unsupervised image translation, and Schr\"odinger bridge inference.