Portrait of Ioannis Mitliagkas

Ioannis Mitliagkas

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Scientist, Google DeepMind
Research Topics
Deep Learning
Distributed Systems
Dynamical Systems
Generative Models
Machine Learning Theory
Optimization
Representation Learning

Biography

Ioannis Mitliagkas is an associate professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal, as well as a Core Academic member of Mila – Quebec Artificial Intelligence Institute and a Canada CIFAR AI Chair. I hold a part-time position as a staff research scientist at Google DeepMind Montréal.

Previously, I was a postdoctoral scholar in the departments of statistics and computer science at Stanford University. I obtained my PhD from the Department of Electrical and Computer Engineering at the University of Texas at Austin.

My research interests lie in statistical learning and inference, with a focus on optimization, efficient large-scale and distributed algorithms, statistical learning theory and MCMC methods. My recent research has focused on methods for efficient and adaptive optimization, understanding the interaction between optimization and the dynamics of large-scale learning systems, and the dynamics of games.

Current Students

PhD - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Postdoctorate - McGill University
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal