Portrait of Ioannis Mitliagkas

Ioannis Mitliagkas

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Scientist, Google DeepMind
Research Topics
Deep Learning
Distributed Systems
Dynamical Systems
Generative Models
Machine Learning Theory
Optimization
Representation Learning

Biography

Ioannis Mitliagkas (Γιάννης Μητλιάγκας) is an associate professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal, as well as a Core Academic member of Mila – Quebec Artificial Intelligence Institute and a Canada CIFAR AI Chair. He holds a part-time position as a staff research scientist at Google DeepMind Montréal.

Previously, he was a postdoctoral scholar in the Departments of statistics and computer science at Stanford University. He obtained his PhD from the Department of Electrical and Computer Engineering at the University of Texas at Austin.

His research includes topics in machine learning, with emphasis on optimization, deep learning theory, statistical learning. His recent work includes methods for efficient and adaptive optimization, studying the interaction between optimization and the dynamics of large-scale learning systems and the dynamics of games.

Current Students

PhD - Université de Montréal
Research Intern - Université de Montréal
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Postdoctorate - McGill University
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Professional Master's - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal

Publications

Gradient descent induces alignment between weights and the pre-activation tangents for deep non-linear networks
Daniel Beaglehole
Atish Agarwala
Understanding the mechanisms through which neural networks extract statistics from input-label pairs is one of the most important unsolved p… (see more)roblems in supervised learning. Prior works have identified that the gram matrices of the weights in trained neural networks of general architectures are proportional to the average gradient outer product of the model, in a statement known as the Neural Feature Ansatz (NFA). However, the reason these quantities become correlated during training is poorly understood. In this work, we clarify the nature of this correlation and explain its emergence at early training times. We identify that the NFA is equivalent to alignment between the left singular structure of the weight matrices and the newly defined pre-activation tangent kernel. We identify a centering of the NFA that isolates this alignment and is robust to initialization scale. We show that, through this centering, the speed of NFA development can be predicted analytically in terms of simple statistics of the inputs and labels.
Gradient descent induces alignment between weights and the pre-activation tangents for deep non-linear networks
Daniel Beaglehole
Atish Agarwala
Understanding the mechanisms through which neural networks extract statistics from input-label pairs is one of the most important unsolved p… (see more)roblems in supervised learning. Prior works have identified that the gram matrices of the weights in trained neural networks of general architectures are proportional to the average gradient outer product of the model, in a statement known as the Neural Feature Ansatz (NFA). However, the reason these quantities become correlated during training is poorly understood. In this work, we clarify the nature of this correlation and explain its emergence at early training times. We identify that the NFA is equivalent to alignment between the left singular structure of the weight matrices and the newly defined pre-activation tangent kernel. We identify a centering of the NFA that isolates this alignment and is robust to initialization scale. We show that, through this centering, the speed of NFA development can be predicted analytically in terms of simple statistics of the inputs and labels.
Are we making progress in unlearning? Findings from the first NeurIPS unlearning competition
Eleni Triantafillou
Peter Kairouz
Fabian Pedregosa
Jamie Hayes
Meghdad Kurmanji
Kairan Zhao
Vincent Dumoulin
Julio C. S. Jacques Junior
Jun Wan
Lisheng Sun-Hosoya
Sergio Escalera
Peter Triantafillou
Isabelle Guyon
We present the findings of the first NeurIPS competition on unlearning, which sought to stimulate the development of novel algorithms and in… (see more)itiate discussions on formal and robust evaluation methodologies. The competition was highly successful: nearly 1,200 teams from across the world participated, and a wealth of novel, imaginative solutions with different characteristics were contributed. In this paper, we analyze top solutions and delve into discussions on benchmarking unlearning, which itself is a research problem. The evaluation methodology we developed for the competition measures forgetting quality according to a formal notion of unlearning, while incorporating model utility for a holistic evaluation. We analyze the effectiveness of different instantiations of this evaluation framework vis-a-vis the associated compute cost, and discuss implications for standardizing evaluation. We find that the ranking of leading methods remains stable under several variations of this framework, pointing to avenues for reducing the cost of evaluation. Overall, our findings indicate progress in unlearning, with top-performing competition entries surpassing existing algorithms under our evaluation framework. We analyze trade-offs made by different algorithms and strengths or weaknesses in terms of generalizability to new datasets, paving the way for advancing both benchmarking and algorithm development in this important area.
Are we making progress in unlearning? Findings from the first NeurIPS unlearning competition
Eleni Triantafillou
Peter Kairouz
Fabian Pedregosa
Jamie Hayes
Meghdad Kurmanji
Kairan Zhao
Vincent Dumoulin
Julio C. S. Jacques Junior
Jun Wan
Lisheng Sun-Hosoya
Sergio Escalera
Peter Triantafillou
Isabelle Guyon
We present the findings of the first NeurIPS competition on unlearning, which sought to stimulate the development of novel algorithms and in… (see more)itiate discussions on formal and robust evaluation methodologies. The competition was highly successful: nearly 1,200 teams from across the world participated, and a wealth of novel, imaginative solutions with different characteristics were contributed. In this paper, we analyze top solutions and delve into discussions on benchmarking unlearning, which itself is a research problem. The evaluation methodology we developed for the competition measures forgetting quality according to a formal notion of unlearning, while incorporating model utility for a holistic evaluation. We analyze the effectiveness of different instantiations of this evaluation framework vis-a-vis the associated compute cost, and discuss implications for standardizing evaluation. We find that the ranking of leading methods remains stable under several variations of this framework, pointing to avenues for reducing the cost of evaluation. Overall, our findings indicate progress in unlearning, with top-performing competition entries surpassing existing algorithms under our evaluation framework. We analyze trade-offs made by different algorithms and strengths or weaknesses in terms of generalizability to new datasets, paving the way for advancing both benchmarking and algorithm development in this important area.
Smoothness-Adaptive Sharpness-Aware Minimization for Finding Flatter Minima
Hiroki Naganuma
Junhyung Lyle Kim
Anastasios Kyrillidis
The sharpness-aware minimization (SAM) procedure recently gained increasing attention due to its favorable generalization ability to unseen … (see more)data. SAM aims to find flatter (local) minima, utilizing a minimax objective. An immediate challenge in the application of SAM is the adjustment of two pivotal step sizes, which significantly influence its effectiveness. We introduce a novel, straightforward approach for adjusting step sizes that adapts to the smoothness of the objective function, thereby reducing the necessity for manual tuning. This method, termed Smoothness-Adaptive SAM (SA-SAM), not only simplifies the optimization process but also promotes the method's inherent tendency to converge towards flatter minima, enhancing performance in specific models.
Gradient descent induces alignment between weights and the empirical NTK for deep non-linear networks
Daniel Beaglehole
Atish Agarwala
Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation
Divyat Mahajan
Brady Neal
Vasilis Syrgkanis
Empirical Analysis of Model Selection for Heterogenous Causal Effect Estimation
Divyat Mahajan
Brady Neal
Vasilis Syrgkanis
We study the problem of model selection in causal inference, specifically for the case of conditional average treatment effect (CATE) estima… (see more)tion under binary treatments. Unlike model selection in machine learning, there is no perfect analogue of cross-validation as we do not observe the counterfactual potential outcome for any data point. Towards this, there have been a variety of proxy metrics proposed in the literature, that depend on auxiliary nuisance models estimated from the observed data (propensity score model, outcome regression model). However, the effectiveness of these metrics has only been studied on synthetic datasets as we can access the counterfactual data for them. We conduct an extensive empirical analysis to judge the performance of these metrics introduced in the literature, and novel ones introduced in this work, where we utilize the latest advances in generative modeling to incorporate multiple realistic datasets. Our analysis suggests novel model selection strategies based on careful hyperparameter tuning of CATE estimators and causal ensembling.
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize
Ryan D'Orazio
Nicolas Loizou
Issam Hadj Laradji
We investigate the convergence of stochastic mirror descent (SMD) under interpolation in relatively smooth and smooth convex optimization. I… (see more)n relatively smooth convex optimization we provide new convergence guarantees for SMD with a constant stepsize. For smooth convex optimization we propose a new adaptive stepsize scheme --- the mirror stochastic Polyak stepsize (mSPS). Notably, our convergence results in both settings do not make bounded gradient assumptions or bounded variance assumptions, and we show convergence to a neighborhood that vanishes under interpolation. Consequently, these results correspond to the first convergence guarantees under interpolation for the exponentiated gradient algorithm for fixed or adaptive stepsizes. mSPS generalizes the recently proposed stochastic Polyak stepsize (SPS) (Loizou et al. 2021) to mirror descent and remains both practical and efficient for modern machine learning applications while inheriting the benefits of mirror descent. We complement our results with experiments across various supervised learning tasks and different instances of SMD, demonstrating the effectiveness of mSPS.
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
Sébastien Lachapelle
Divyat Mahajan
We tackle the problems of latent variables identification and "out-of-support'' image generation in representation learning. We show that bo… (see more)th are possible for a class of decoders that we call additive, which are reminiscent of decoders used for object-centric representation learning (OCRL) and well suited for images that can be decomposed as a sum of object-specific images. We provide conditions under which exactly solving the reconstruction problem using an additive decoder is guaranteed to identify the blocks of latent variables up to permutation and block-wise invertible transformations. This guarantee relies only on very weak assumptions about the distribution of the latent factors, which might present statistical dependencies and have an almost arbitrarily shaped support. Our result provides a new setting where nonlinear independent component analysis (ICA) is possible and adds to our theoretical understanding of OCRL methods. We also show theoretically that additive decoders can generate novel images by recombining observed factors of variations in novel ways, an ability we refer to as Cartesian-product extrapolation. We show empirically that additivity is crucial for both identifiability and extrapolation on simulated data.
CADet: Fully Self-Supervised Anomaly Detection With Contrastive Learning
Charles Guille-Escuret
Pau Rodriguez
David Vazquez
Joao Monteiro
CADet: Fully Self-Supervised Out-Of-Distribution Detection With Contrastive Learning
Charles Guille-Escuret
Pau Rodriguez
David Vazquez
Joao Monteiro