Portrait of Danilo Vucetic

Danilo Vucetic

PhD - Université de Montréal
Supervisor
Research Topics
Deep Learning
Game Theory
Generative Models
GFlowNets
Learning on Graphs
Optimization
Probabilistic Models
Reinforcement Learning

Publications

Robust Reinforcement Learning for Discrete Compositional Generation via General Soft Operators
A major bottleneck in scientific discovery involves narrowing a large combinatorial set of objects, such as proteins or molecules, to a smal… (see more)l set of promising candidates. While this process largely relies on expert knowledge, recent methods leverage reinforcement learning (RL) to enhance this filtering. They achieve this by estimating proxy reward functions from available datasets and using regularization to generate more diverse candidates. These reward functions are inherently uncertain, raising a particularly salient challenge for scientific discovery. In this work, we show that existing methods, often framed as sampling proportional to a reward function, are inadequate and yield suboptimal candidates, especially in large search spaces. To remedy this issue, we take a robust RL approach and introduce a unified operator that seeks robustness to the uncertainty of the proxy reward function. This general operator targets peakier sampling distributions while encompassing known soft RL operators. It also leads us to a novel algorithm that identifies higher-quality, diverse candidates in both synthetic and real-world tasks. Ultimately, our work offers a new, flexible perspective on discrete compositional generation tasks. Code: https://github.com/marcojira/tgm.
Robust Reinforcement Learning for Discrete Compositional Generation via General Soft Operators
A major bottleneck in scientific discovery involves narrowing a large combinatorial set of objects, such as proteins or molecules, to a smal… (see more)l set of promising candidates. While this process largely relies on expert knowledge, recent methods leverage reinforcement learning (RL) to enhance this filtering. They achieve this by estimating proxy reward functions from available datasets and using regularization to generate more diverse candidates. These reward functions are inherently uncertain, raising a particularly salient challenge for scientific discovery. In this work, we show that existing methods, often framed as sampling proportional to a reward function, are inadequate and yield suboptimal candidates, especially in large search spaces. To remedy this issue, we take a robust RL approach and introduce a unified operator that seeks robustness to the uncertainty of the proxy reward function. This general operator targets peakier sampling distributions while encompassing known soft RL operators. It also leads us to a novel algorithm that identifies higher-quality, diverse candidates in both synthetic and real-world tasks. Ultimately, our work offers a new, flexible perspective on discrete compositional generation tasks. Code: https://github.com/marcojira/tgm.
Solving Hidden Monotone Variational Inequalities with Surrogate Losses
Deep learning has proven to be effective in a wide variety of loss minimization problems. However, many applications of interest, like minim… (see more)izing projected Bellman error and min-max optimization, cannot be modelled as minimizing a scalar loss function but instead correspond to solving a variational inequality (VI) problem. This difference in setting has caused many practical challenges as naive gradient-based approaches from supervised learning tend to diverge and cycle in the VI case. In this work, we propose a principled surrogate-based approach compatible with deep learning to solve VIs. We show that our surrogate-based approach has three main benefits: (1) under assumptions that are realistic in practice (when hidden monotone structure is present, interpolation, and sufficient optimization of the surrogates), it guarantees convergence, (2) it provides a unifying perspective of existing methods, and (3) is amenable to existing deep learning optimizers like ADAM. Experimentally, we demonstrate our surrogate-based approach is effective in min-max optimization and minimizing projected Bellman error. Furthermore, in the deep reinforcement learning case, we propose a novel variant of TD(0) which is more compute and sample efficient.
Solving Hidden Monotone Variational Inequalities with Surrogate Losses
Deep learning has proven to be effective in a wide variety of loss minimization problems. However, many applications of interest, like minim… (see more)izing projected Bellman error and min-max optimization, cannot be modelled as minimizing a scalar loss function but instead correspond to solving a variational inequality (VI) problem. This difference in setting has caused many practical challenges as naive gradient-based approaches from supervised learning tend to diverge and cycle in the VI case. In this work, we propose a principled surrogate-based approach compatible with deep learning to solve VIs. We show that our surrogate-based approach has three main benefits: (1) under assumptions that are realistic in practice (when hidden monotone structure is present, interpolation, and sufficient optimization of the surrogates), it guarantees convergence, (2) it provides a unifying perspective of existing methods, and (3) is amenable to existing deep learning optimizers like ADAM. Experimentally, we demonstrate our surrogate-based approach is effective in min-max optimization and minimizing projected Bellman error. Furthermore, in the deep reinforcement learning case, we propose a novel variant of TD(0) which is more compute and sample efficient.
Expected flow networks in stochastic environments and two-player zero-sum games
Efficient Fine-Tuning of BERT Models on the Edge
Mohammadreza Tayaranian
Maryam Ziaeefard
James J. Clark
Brett Meyer
Resource-constrained devices are increasingly the deployment targets of machine learning applications. Static models, however, do not always… (see more) suffice for dynamic environments. On-device training of models allows for quick adaptability to new scenarios. With the increasing size of deep neural networks, as noted with the likes of BERT and other natural language processing models, comes increased resource requirements, namely memory, computation, energy, and time. Furthermore, training is far more resource intensive than inference. Resource-constrained on-device learning is thus doubly difficult, especially with large BERT-like models. By reducing the memory usage of fine-tuning, pre-trained BERT models can become efficient enough to fine-tune on resource-constrained devices. We propose Freeze And ReconFigure (FAR), a memory-efficient training regime for BERT-like models that reduces the memory usage of activation maps during fine-tuning by avoiding unnecessary parameter updates. FAR reduces fine-tuning time on the DistilBERT model and CoLA dataset by 30 %, and time spent on memory operations by 47%. More broadly, reductions in metric performance on the GLUE and SQuAD datasets are around 1% on average.