Portrait de Hugo Larochelle

Hugo Larochelle

Membre industriel principal
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Chercheur scientifique
Directeur scientifique, Équipe de direction
Sujets de recherche
Apprentissage profond

Biographie

Hugo Larochelle est un chercheur pionnier en apprentissage profond, leader industriel et philanthrope.

Il a commencé son parcours académique auprès de deux des « Pères fondateurs » de l'intelligence artificielle : Yoshua Bengio, son directeur de thèse à l'Université de Montréal, et Geoffrey Hinton, son superviseur postdoctoral à l'Université de Toronto.

Au fil des ans, ses recherches ont mené à plusieurs découvertes majeures présentes dans les systèmes d'IA modernes. Ses travaux sur les auto-encodeurs débruiteurs (denoising autoencoders) ont identifié la reconstruction de données brutes à partir de versions corrompues comme un paradigme clé pour l'apprentissage de représentations abstraites utiles à partir de grandes quantités de données non étiquetées. Avec des modèles tels que l'estimateur de distribution autorégressif neuronal (neural autoregressive distribution estimator) et l'auto-encodeur masqué pour l'estimation de distribution (masked autoencoder distribution estimator), il a contribué à populariser la modélisation autorégressive avec des réseaux de neurones, un paradigme aujourd'hui omniprésent dans l'IA générative. Ses travaux sur l'apprentissage de nouvelles tâches sans données (Zero-Data Learning of New Tasks) ont introduit pour la première fois le concept aujourd'hui courant d'apprentissage zero-shot.

Il a ensuite transposé son expertise académique à l'industrie en cofondant la startup Whetlab, qui a été rachetée par Twitter en 2015. Après avoir travaillé chez Twitter Cortex, il a été recruté pour diriger le laboratoire de recherche en IA de Google à Montréal (Google Brain), maintenant intégré à Google DeepMind. Il est professeur associé à l'Université de Montréal où il mentore la prochaine génération de chercheuses et chercheurs en IA. Il a également développé une série de cours en ligne gratuits sur l’apprentissage automatique.

Père de quatre enfants, Hugo Larochelle et sa conjointe, Angèle St-Pierre, ont également fait de multiples dons à l'Université de Montréal, à l'Université de Sherbrooke (où il a été professeur) et l’Université Laval pour soutenir les étudiantes et étudiants et faire avancer la recherche, particulièrement dans le domaine de l'IA pour l’environnement. Il a également initié la conférence TechAide, qui mobilise la communauté technologique de Montréal pour amasser des fonds pour Centraide, soutenant ainsi la mission de l'organisme de bienfaisance de lutter contre la pauvreté et l'exclusion sociale.

Étudiants actuels

Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :

Publications

CISO: Species Distribution Modeling Conditioned on Incomplete Species Observations
Mélisande Teng
Robin Zbinden
Laura Pollock
Devis Tuia
Species distribution models (SDMs) are widely used to predict species'geographic distributions, serving as critical tools for ecological res… (voir plus)earch and conservation planning. Typically, SDMs relate species occurrences to environmental variables representing abiotic factors, such as temperature, precipitation, and soil properties. However, species distributions are also strongly influenced by biotic interactions with other species, which are often overlooked. While some methods partially address this limitation by incorporating biotic interactions, they often assume symmetrical pairwise relationships between species and require consistent co-occurrence data. In practice, species observations are sparse, and the availability of information about the presence or absence of other species varies significantly across locations. To address these challenges, we propose CISO, a deep learning-based method for species distribution modeling Conditioned on Incomplete Species Observations. CISO enables predictions to be conditioned on a flexible number of species observations alongside environmental variables, accommodating the variability and incompleteness of available biotic data. We demonstrate our approach using three datasets representing different species groups: sPlotOpen for plants, SatBird for birds, and a new dataset, SatButterfly, for butterflies. Our results show that including partial biotic information improves predictive performance on spatially separate test sets. When conditioned on a subset of species within the same dataset, CISO outperforms alternative methods in predicting the distribution of the remaining species. Furthermore, we show that combining observations from multiple datasets can improve performance. CISO is a promising ecological tool, capable of incorporating incomplete biotic information and identifying potential interactions between species from disparate taxa.
CISO: Species Distribution Modeling Conditioned on Incomplete Species Observations
Mélisande Teng
Robin Zbinden
Laura Pollock
Devis Tuia
Species distribution models (SDMs) are widely used to predict species'geographic distributions, serving as critical tools for ecological res… (voir plus)earch and conservation planning. Typically, SDMs relate species occurrences to environmental variables representing abiotic factors, such as temperature, precipitation, and soil properties. However, species distributions are also strongly influenced by biotic interactions with other species, which are often overlooked. While some methods partially address this limitation by incorporating biotic interactions, they often assume symmetrical pairwise relationships between species and require consistent co-occurrence data. In practice, species observations are sparse, and the availability of information about the presence or absence of other species varies significantly across locations. To address these challenges, we propose CISO, a deep learning-based method for species distribution modeling Conditioned on Incomplete Species Observations. CISO enables predictions to be conditioned on a flexible number of species observations alongside environmental variables, accommodating the variability and incompleteness of available biotic data. We demonstrate our approach using three datasets representing different species groups: sPlotOpen for plants, SatBird for birds, and a new dataset, SatButterfly, for butterflies. Our results show that including partial biotic information improves predictive performance on spatially separate test sets. When conditioned on a subset of species within the same dataset, CISO outperforms alternative methods in predicting the distribution of the remaining species. Furthermore, we show that combining observations from multiple datasets can improve performance. CISO is a promising ecological tool, capable of incorporating incomplete biotic information and identifying potential interactions between species from disparate taxa.
Towards Sustainable Investment Policies Informed by Opponent Shaping
Addressing climate change requires global coordination, yet rational economic actors often prioritize immediate gains over collective welfar… (voir plus)e, resulting in social dilemmas. InvestESG is a recently proposed multi-agent simulation that captures the dynamic interplay between investors and companies under climate risk. We provide a formal characterization of the conditions under which InvestESG exhibits an intertemporal social dilemma, deriving theoretical thresholds at which individual incentives diverge from collective welfare. Building on this, we apply Advantage Alignment, a scalable opponent shaping algorithm shown to be effective in general-sum games, to influence agent learning in InvestESG. We offer theoretical insights into why Advantage Alignment systematically favors socially beneficial equilibria by biasing learning dynamics toward cooperative outcomes. Our results demonstrate that strategically shaping the learning processes of economic agents can result in better outcomes that could inform policy mechanisms to better align market incentives with long-term sustainability goals.
Bringing SAM to new heights: Leveraging elevation data for tree crown segmentation from drone imagery
Mélisande Teng
Etienne Lalibert'e
Information on trees at the individual level is crucial for monitoring forest ecosystems and planning forest management. Current monitoring … (voir plus)methods involve ground measurements, requiring extensive cost, time and labor. Advances in drone remote sensing and computer vision offer great potential for mapping individual trees from aerial imagery at broad-scale. Large pre-trained vision models, such as the Segment Anything Model (SAM), represent a particularly compelling choice given limited labeled data. In this work, we compare methods leveraging SAM for the task of automatic tree crown instance segmentation in high resolution drone imagery in three use cases: 1) boreal plantations, 2) temperate forests and 3) tropical forests. We also study the integration of elevation data into models, in the form of Digital Surface Model (DSM) information, which can readily be obtained at no additional cost from RGB drone imagery. We present BalSAM, a model leveraging SAM and DSM information, which shows potential over other methods, particularly in the context of plantations. We find that methods using SAM out-of-the-box do not outperform a custom Mask R-CNN, even with well-designed prompts. However, efficiently tuning SAM end-to-end and integrating DSM information are both promising avenues for tree crown instance segmentation models.
Bringing SAM to new heights: Leveraging elevation data for tree crown segmentation from drone imagery
Mélisande Teng
Etienne Lalibert'e
Information on trees at the individual level is crucial for monitoring forest ecosystems and planning forest management. Current monitoring … (voir plus)methods involve ground measurements, requiring extensive cost, time and labor. Advances in drone remote sensing and computer vision offer great potential for mapping individual trees from aerial imagery at broad-scale. Large pre-trained vision models, such as the Segment Anything Model (SAM), represent a particularly compelling choice given limited labeled data. In this work, we compare methods leveraging SAM for the task of automatic tree crown instance segmentation in high resolution drone imagery in three use cases: 1) boreal plantations, 2) temperate forests and 3) tropical forests. We also study the integration of elevation data into models, in the form of Digital Surface Model (DSM) information, which can readily be obtained at no additional cost from RGB drone imagery. We present BalSAM, a model leveraging SAM and DSM information, which shows potential over other methods, particularly in the context of plantations. We find that methods using SAM out-of-the-box do not outperform a custom Mask R-CNN, even with well-designed prompts. However, efficiently tuning SAM end-to-end and integrating DSM information are both promising avenues for tree crown instance segmentation models.
The Search for Squawk: Agile Modeling in Bioacoustics
Vincent Dumoulin
Otilia Stretcu
Jenny Hamer
Lauren Harrell
Rob Laber
Bart van Merriënboer
Amanda Navine
Patrick Hart
Ben Williams
Timothy A. C. Lamont
Tries B. Rasak
Mars Coral Restoration Team
Sheryn Brodie
Brendan Doohan
Philip Eichinski
Paul Roe
Lin Schwarzkopf
Tom Denton
The Search for Squawk: Agile Modeling in Bioacoustics
Vincent Dumoulin
Otilia Stretcu
Jenny Hamer
Lauren Harrell
Rob Laber
Bart van Merriënboer
Amanda Navine
Patrick Hart
Ben Williams
Timothy A. C. Lamont
Tries B. Rasak
Mars Coral Restoration Team
Sheryn Brodie
Brendan Doohan
Philip Eichinski
Paul Roe
Lin Schwarzkopf
Tom Denton
Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery
Mélisande Teng
Etienne Lalibert'e
Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery
Mélisande Teng
Etienne Lalibert'e
Capturing Individual Human Preferences with Reward Features
Andr'e Barreto
Vincent Dumoulin
Yiran Mao
Nicolas Perez-Nieves
Bobak Shahriari
Yann Dauphin
Capturing Individual Human Preferences with Reward Features
Andre Barreto
Vincent Dumoulin
Yiran Mao
Nicolas Perez-Nieves
Bobak Shahriari
Yann Dauphin
Reinforcement learning from human feedback usually models preferences using a reward model that does not distinguish between people. We argu… (voir plus)e that this is unlikely to be a good design choice in contexts with high potential for disagreement, like in the training of large language models. We propose a method to specialise a reward model to a person or group of people. Our approach builds on the observation that individual preferences can be captured as a linear combination of a set of general reward features. We show how to learn such features and subsequently use them to quickly adapt the reward model to a specific individual, even if their preferences are not reflected in the training data. We present experiments with large language models comparing the proposed architecture with a non-adaptive reward model and also adaptive counterparts, including models that do in-context personalisation. Depending on how much disagreement there is in the training data, our model either significantly outperforms the baselines or matches their performance with a simpler architecture and more stable training.
Don't flatten, tokenize! Unlocking the key to SoftMoE's efficacy in deep RL
The use of deep neural networks in reinforcement learning (RL) often suffers from performance degradation as model size increases. While sof… (voir plus)t mixtures of experts (SoftMoEs) have recently shown promise in mitigating this issue for online RL, the reasons behind their effectiveness remain largely unknown. In this work we provide an in-depth analysis identifying the key factors driving this performance gain. We discover the surprising result that tokenizing the encoder output, rather than the use of multiple experts, is what is behind the efficacy of SoftMoEs. Indeed, we demonstrate that even with an appropriately scaled single expert, we are able to maintain the performance gains, largely thanks to tokenization.