Portrait de Guillaume Lajoie

Guillaume Lajoie

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, Université de Montréal, Département de mathématiques et statistiques
Chercheur invité, Google
Sujets de recherche
Apprentissage de représentations
Apprentissage profond
Cognition
IA en santé
IA pour la science
Neurosciences computationnelles
Optimisation
Raisonnement
Réseaux de neurones récurrents
Systèmes dynamiques

Biographie

Guillaume Lajoie est professeur agrégé au Département de mathématiques et de statistiques (DMS) de l'Université de Montréal et membre académique principal de Mila – Institut québécois d’intelligence artificielle. Il est titulaire d'une chaire CIFAR (CCAI Canada) ainsi que d'une chaire de recherche du Canada (CRC) en calcul et interfaçage neuronaux.

Ses recherches sont positionnées à l'intersection de l'IA et des neurosciences où il développe des outils pour mieux comprendre les mécanismes d'intelligence communs aux systèmes biologiques et artificiels. Les contributions de son groupe de recherche vont des progrès des paradigmes d'apprentissage à plusieurs échelles pour les grands systèmes artificiels aux applications en neurotechnologie. Dr. Lajoie participe activement aux efforts de développement responsables de l'IA, cherchant à identifier les lignes directrices et les meilleures pratiques pour l'utilisation de l'IA dans la recherche et au-delà.

Étudiants actuels

Collaborateur·rice de recherche - ETH Zurich
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Postdoctorat - McGill
Superviseur⋅e principal⋅e :
Stagiaire de recherche - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - Polytechnique
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - McGill
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - Concordia
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Collaborateur·rice de recherche
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Visiteur de recherche indépendant - Champalimeau Institute for the Unknown
Postdoctorat - UdeM

Publications

Recursive Self-Aggregation Unlocks Deep Thinking in Large Language Models
Test-time scaling methods improve the capabilities of large language models (LLMs) by increasing the amount of compute used during inference… (voir plus) to make a prediction. Inference-time compute can be scaled in parallel by choosing among multiple independent solutions or sequentially through self-refinement. We propose Recursive Self-Aggregation (RSA), a test-time scaling method inspired by evolutionary methods that combines the benefits of both parallel and sequential scaling. Each step of RSA refines a population of candidate reasoning chains through aggregation of subsets to yield a population of improved solutions, which are then used as the candidate pool for the next iteration. RSA exploits the rich information embedded in the reasoning chains -- not just the final answers -- and enables bootstrapping from partially correct intermediate steps within different chains of thought. Empirically, RSA delivers substantial performance gains with increasing compute budgets across diverse tasks, model families and sizes. Notably, RSA enables Qwen3-4B-Instruct-2507 to achieve competitive performance with larger reasoning models, including DeepSeek-R1 and o3-mini (high), while outperforming purely parallel and sequential scaling strategies across AIME-25, HMMT-25, Reasoning Gym, LiveCodeBench-v6, and SuperGPQA. We further demonstrate that training the model to combine solutions via a novel aggregation-aware reinforcement learning approach yields significant performance gains. Code available at https://github.com/HyperPotatoNeo/RSA.
Tracing the Representation Geometry of Language Models from Pretraining to Post-training
Melody Zixuan Li
Kumar Krishna Agrawal
Komal K. Teru
Adam Santoro
Blake A. Richards
Standard training metrics like loss fail to explain the emergence of complex capabilities in large language models. We take a spectral appro… (voir plus)ach to investigate the geometry of learned representations across pretraining and post-training, measuring effective rank (RankMe) and eigenspectrum decay (
Neuromorphic hierarchical modular reservoirs
Filip Milisav
Andrea I Luppi
Laura E Suárez
Bratislav Mišić
Next-Token Prediction Should be Ambiguity-Sensitive: A Meta-Learning Perspective
The rapid adaptation ability of auto-regressive foundation models is often attributed to the diversity of their pre-training data. This is b… (voir plus)ecause, from a Bayesian standpoint, minimizing prediction error in such settings requires integrating over all plausible latent hypotheses consistent with observations. While this behavior is desirable in principle, it often proves too ambitious in practice: under high ambiguity, the number of plausible latent alternatives makes Bayes-optimal prediction computationally intractable. Cognitive science has long recognized this limitation, suggesting that under such conditions, heuristics or information-seeking strategies are preferable to exhaustive inference. Translating this insight to next-token prediction, we hypothesize that low- and high-ambiguity predictions pose different computational demands, making ambiguity-agnostic next-token prediction a detrimental inductive bias. To test this, we introduce MetaHMM, a synthetic sequence meta-learning benchmark with rich compositional structure and a tractable Bayesian oracle. We show that Transformers indeed struggle with high-ambiguity predictions across model sizes. Motivated by cognitive theories, we propose a method to convert pre-trained models into Monte Carlo predictors that decouple task inference from token prediction. Preliminary results show substantial gains in ambiguous contexts through improved capacity allocation and test-time scalable inference, though challenges remain.
Next-Token Prediction Should be Ambiguity-Sensitive: A Meta-Learning Perspective
The rapid adaptation ability of auto-regressive foundation models is often attributed to the diversity of their pre-training data. This is b… (voir plus)ecause, from a Bayesian standpoint, minimizing prediction error in such settings requires integrating over all plausible latent hypotheses consistent with observations. While this behavior is desirable in principle, it often proves too ambitious in practice: under high ambiguity, the number of plausible latent alternatives makes Bayes-optimal prediction computationally intractable. Cognitive science has long recognized this limitation, suggesting that under such conditions, heuristics or information-seeking strategies are preferable to exhaustive inference. Translating this insight to next-token prediction, we hypothesize that low- and high-ambiguity predictions pose different computational demands, making ambiguity-agnostic next-token prediction a detrimental inductive bias. To test this, we introduce MetaHMM, a synthetic sequence meta-learning benchmark with rich compositional structure and a tractable Bayesian oracle. We show that Transformers indeed struggle with high-ambiguity predictions across model sizes. Motivated by cognitive theories, we propose a method to convert pre-trained models into Monte Carlo predictors that decouple task inference from token prediction. Preliminary results show substantial gains in ambiguous contexts through improved capacity allocation and test-time scalable inference, though challenges remain.
Next-Token Prediction Should be Ambiguity-Sensitive : A Meta-Learing Perspective
Tracing the representation geometry of language models from pretraining to post-training
Melody Zixuan Li
Kumar Krishna Agrawal
Komal Kumar Teru
The geometry of representations in a neural network can significantly impact downstream generalization. It is unknown how representation geo… (voir plus)metry changes in large language models (LLMs) over pretraining and post-training. Here, we characterize the evolving geometry of LLM representations using spectral methods (effective rank and eigenspectrum decay). With the OLMo and Pythia model families we uncover a consistent non-monotonic sequence of three distinct geometric phases in pretraining. An initial \warmup phase sees rapid representational compression. This is followed by an "entropy-seeking" phase, characterized by expansion of the representation manifold's effective dimensionality, which correlates with an increase in memorization. Subsequently, a "compression seeking" phase imposes anisotropic consolidation, selectively preserving variance along dominant eigendirections while contracting others, correlating with improved downstream task performance. We link the emergence of these phases to the fundamental interplay of cross-entropy optimization, information bottleneck, and skewed data distribution. Additionally, we find that in post-training the representation geometry is further transformed: Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO) correlate with another "entropy-seeking" dynamic to integrate specific instructional or preferential data, reducing out-of-distribution robustness. Conversely, Reinforcement Learning with Verifiable Rewards (RLVR) often exhibits a "compression seeking" dynamic, consolidating reward-aligned behaviors and reducing the entropy in its output distribution. This work establishes the utility of spectral measures of representation geometry for understanding the multiphase learning dynamics within LLMs.
Generalizable, real-time neural decoding with hybrid state-space models
Avery Hee-Woon Ryoo
Nanda H Krishna
Mehdi Azabou
Eva L Dyer
Real-time decoding of neural activity is central to neuroscience and neurotechnology applications, from closed-loop experiments to brain-com… (voir plus)puter interfaces, where models are subject to strict latency constraints. Traditional methods, including simple recurrent neural networks, are fast and lightweight but often struggle to generalize to unseen data. In contrast, recent Transformer-based approaches leverage large-scale pretraining for strong generalization performance, but typically have much larger computational requirements and are not always suitable for low-resource or real-time settings. To address these shortcomings, we present POSSM, a novel hybrid architecture that combines individual spike tokenization via a cross-attention module with a recurrent state-space model (SSM) backbone to enable (1) fast and causal online prediction on neural activity and (2) efficient generalization to new sessions, individuals, and tasks through multi-dataset pretraining. We evaluate POSSM's decoding performance and inference speed on intracortical decoding of monkey motor tasks, and show that it extends to clinical applications, namely handwriting and speech decoding in human subjects. Notably, we demonstrate that pretraining on monkey motor-cortical recordings improves decoding performance on the human handwriting task, highlighting the exciting potential for cross-species transfer. In all of these tasks, we find that POSSM achieves decoding accuracy comparable to state-of-the-art Transformers, at a fraction of the inference cost (up to 9x faster on GPU). These results suggest that hybrid SSMs are a promising approach to bridging the gap between accuracy, inference speed, and generalization when training neural decoders for real-time, closed-loop applications.
MesaNet: Sequence Modeling by Locally Optimal Test-Time Training
Johannes Von Oswald
Nino Scherrer
Seijin Kobayashi
Luca Versari
Songlin Yang
Maximilian Schlegel
Kaitlin Maile
Yanick Schimpf
Oliver Sieberling
Alexander Meulemans
Rif A. Saurous
Charlotte Frenkel
Blaise Aguera y Arcas
João Sacramento
Sequence modeling is currently dominated by causal transformer architectures that use softmax self-attention. Although widely adopted, trans… (voir plus)formers require scaling memory and compute linearly during inference. A recent stream of work linearized the softmax operation, resulting in powerful recurrent neural network (RNN) models with constant memory and compute costs such as DeltaNet, Mamba or xLSTM. These models can be unified by noting that their recurrent layer dynamics can all be derived from an in-context regression objective, approximately optimized through an online learning rule. Here, we join this line of work and introduce a numerically stable, chunkwise parallelizable version of the recently proposed Mesa layer (von Oswald et al., 2024), and study it in language modeling at the billion-parameter scale. This layer again stems from an in-context loss, but which is now minimized to optimality at every time point using a fast conjugate gradient solver. Through an extensive suite of experiments, we show that optimal test-time training enables reaching lower language modeling perplexity and higher downstream benchmark performance than previous RNNs, especially on tasks requiring long context understanding. This performance gain comes at the cost of additional flops spent during inference time. Our results are therefore intriguingly related to recent trends of increasing test-time compute to improve performance -- here by spending compute to solve sequential optimization problems within the neural network itself.
Generalizable, real-time neural decoding with hybrid state-space models
Avery Hee-Woon Ryoo
Nanda H Krishna
Mehdi Azabou
Eva L Dyer
Real-time decoding of neural activity is central to neuroscience and neurotechnology applications, from closed-loop experiments to brain-com… (voir plus)puter interfaces, where models are subject to strict latency constraints. Traditional methods, including simple recurrent neural networks, are fast and lightweight but often struggle to generalize to unseen data. In contrast, recent Transformer-based approaches leverage large-scale pretraining for strong generalization performance, but typically have much larger computational requirements and are not always suitable for low-resource or real-time settings. To address these shortcomings, we present POSSM, a novel hybrid architecture that combines individual spike tokenization via a cross-attention module with a recurrent state-space model (SSM) backbone to enable (1) fast and causal online prediction on neural activity and (2) efficient generalization to new sessions, individuals, and tasks through multi-dataset pretraining. We evaluate POSSM's decoding performance and inference speed on intracortical decoding of monkey motor tasks, and show that it extends to clinical applications, namely handwriting and speech decoding in human subjects. Notably, we demonstrate that pretraining on monkey motor-cortical recordings improves decoding performance on the human handwriting task, highlighting the exciting potential for cross-species transfer. In all of these tasks, we find that POSSM achieves decoding accuracy comparable to state-of-the-art Transformers, at a fraction of the inference cost (up to 9x faster on GPU). These results suggest that hybrid SSMs are a promising approach to bridging the gap between accuracy, inference speed, and generalization when training neural decoders for real-time, closed-loop applications.
MesaNet: Sequence Modeling by Locally Optimal Test-Time Training
Johannes Von Oswald
Nino Scherrer
Seijin Kobayashi
Luca Versari
Songlin Yang
Maximilian Schlegel
Kaitlin Maile
Yanick Schimpf
Oliver Sieberling
Alexander Meulemans
Rif A. Saurous
Charlotte Frenkel
Blaise Aguera y Arcas
João Sacramento
Sequence modeling is currently dominated by causal transformer architectures that use softmax self-attention. Although widely adopted, trans… (voir plus)formers require scaling memory and compute linearly during inference. A recent stream of work linearized the softmax operation, resulting in powerful recurrent neural network (RNN) models with constant memory and compute costs such as DeltaNet, Mamba or xLSTM. These models can be unified by noting that their recurrent layer dynamics can all be derived from an in-context regression objective, approximately optimized through an online learning rule. Here, we join this line of work and introduce a numerically stable, chunkwise parallelizable version of the recently proposed Mesa layer (von Oswald et al., 2024), and study it in language modeling at the billion-parameter scale. This layer again stems from an in-context loss, but which is now minimized to optimality at every time point using a fast conjugate gradient solver. Through an extensive suite of experiments, we show that optimal test-time training enables reaching lower language modeling perplexity and higher downstream benchmark performance than previous RNNs, especially on tasks requiring long context understanding. This performance gain comes at the cost of additional flops spent during inference time. Our results are therefore intriguingly related to recent trends of increasing test-time compute to improve performance -- here by spending compute to solve sequential optimization problems within the neural network itself.
Bidirectional Information Flow (BIF) - A Sample Efficient Hierarchical Gaussian Process for Bayesian Optimization
Juan David Guerra
Thomas Garbay
Hierarchical Gaussian Process (H-GP) models divide problems into different subtasks, allowing for different models to address each part, mak… (voir plus)ing them well-suited for problems with inherent hierarchical structure. However, typical H-GP models do not fully take advantage of this structure, only sending information up or down the hierarchy. This one-way coupling limits sample efficiency and slows convergence. We propose Bidirectional Information Flow (BIF), an efficient H-GP framework that establishes bidirectional information exchange between parent and child models in H-GPs for online training. BIF retains the modular structure of hierarchical models - the parent combines subtask knowledge from children GPs - while introducing top-down feedback to continually refine children models during online learning. This mutual exchange improves sample efficiency, enables robust training, and allows modular reuse of learned subtask models. BIF outperforms conventional H-GP Bayesian Optimization methods, achieving up to 85% and 5x higher