Portrait de Guillaume Lajoie

Guillaume Lajoie

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, Université de Montréal, Département de mathématiques et statistiques
Chercheur invité, Google
Sujets de recherche
Apprentissage de représentations
Apprentissage profond
Cognition
IA en santé
IA pour la science
Neurosciences computationnelles
Optimisation
Raisonnement
Réseaux de neurones récurrents
Systèmes dynamiques

Biographie

Guillaume Lajoie est professeur agrégé au Département de mathématiques et de statistiques (DMS) de l'Université de Montréal et membre académique principal de Mila – Institut québécois d’intelligence artificielle. Il est titulaire d'une chaire CIFAR (CCAI Canada) ainsi que d'une chaire de recherche du Canada (CRC) en calcul et interfaçage neuronaux.

Ses recherches sont positionnées à l'intersection de l'IA et des neurosciences où il développe des outils pour mieux comprendre les mécanismes d'intelligence communs aux systèmes biologiques et artificiels. Les contributions de son groupe de recherche vont des progrès des paradigmes d'apprentissage à plusieurs échelles pour les grands systèmes artificiels aux applications en neurotechnologie. Dr. Lajoie participe activement aux efforts de développement responsables de l'IA, cherchant à identifier les lignes directrices et les meilleures pratiques pour l'utilisation de l'IA dans la recherche et au-delà.

Étudiants actuels

Collaborateur·rice de recherche - ETH Zurich
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Postdoctorat - McGill
Superviseur⋅e principal⋅e :
Stagiaire de recherche - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - Polytechnique
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - Concordia
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Collaborateur·rice de recherche
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - UdeM

Publications

Tracing the Representation Geometry of Language Models from Pretraining to Post-training
Melody Zixuan Li
Komal K. Teru
Adam Santoro
Blake A. Richards
Standard training metrics like loss fail to explain the emergence of complex capabilities in large language models. We take a spectral appro… (voir plus)ach to investigate the geometry of learned representations across pretraining and post-training, measuring effective rank (RankMe) and eigenspectrum decay (
Tracing the Representation Geometry of Language Models from Pretraining to Post-training
Melody Zixuan Li
Komal K. Teru
Adam Santoro
Blake A. Richards
Standard training metrics like loss fail to explain the emergence of complex capabilities in large language models. We take a spectral appro… (voir plus)ach to investigate the geometry of learned representations across pretraining and post-training, measuring effective rank (RankMe) and eigenspectrum decay (
Towards a generalizable, unified framework for decoding from multimodal neural activity
Nanda H Krishna
Avery Hee-Woon Ryoo
Recent advances in neural decoding have led to the development of large-scale deep learning-based neural decoders that can generalize across… (voir plus) sessions and subjects. However, existing approaches predominantly focus on single modalities of neural activity, limiting their applicability to specific modalities and tasks. In this work, we present a multimodal extension of the POYO framework that jointly processes neuronal spikes and local field potentials (LFPs) for behavioural decoding. Our approach employs flexible tokenization schemes for both spikes and LFPs, enabling efficient processing of heterogeneous neural populations without preprocessing requirements like binning. Through experiments on data from nonhuman primates performing motor tasks, we demonstrate that multimodal pretraining yields superior decoding performance compared to unimodal baselines. We also show evidence of cross-modal transfer: models pretrained on both modalities outperform LFP-only models when fine-tuned solely on LFPs, suggesting a path toward more cost-effective brain-computer interfaces that can use performant LFP-based decoders. Our models also exhibit robustness to missing modalities during inference when trained with modality masking, and scale effectively with both model size and pretraining data. Overall, this work represents an important first step towards unified, general-purpose neural decoders capable of leveraging diverse neural signals for a variety of brain-computer interface applications.
Brain-like neural dynamics for behavioral control develop through reinforcement learning
Nanda H Krishna
M.G. Perich
During development, neural circuits are shaped continuously as we learn to control our bodies. The ultimate goal of this process is to produ… (voir plus)ce neural dynamics that enable the rich repertoire of behaviors we perform with our limbs. What begins as a series of “babbles” coalesces into skilled motor output as the brain rapidly learns to control the body. However, the nature of the teaching signal underlying this normative learning process remains elusive. Here, we test two well-established and biologically plausible theories—supervised learning (SL) and reinforcement learning (RL)—that could explain how neural circuits develop the capacity for skilled movements. We trained recurrent neural networks to control a biomechanical model of a primate arm using either SL or RL and compared the resulting neural dynamics to populations of neurons recorded from the motor cortex of monkeys performing the same movements. Intriguingly, only RL-trained networks produced neural activity that matched their biological counterparts in terms of both the geometry and dynamics of population activity. We show that the similarity between RL-trained networks and biological brains depends critically on matching biomechanical properties of the limb. We then demonstrated that monkeys and RL-trained networks, but not SL-trained networks, show a strikingly similar capacity for robust short-term behavioral adaptation to a movement perturbation, indicating a fundamental and general commonality in the neural control policy. Together, our results support the hypothesis that neural dynamics for behavioral control emerge through a process akin to reinforcement learning. The resulting neural circuits offer numerous advantages for adaptable behavioral control over simpler and more efficient learning rules and expand our understanding of how developmental processes shape neural dynamics.
Neuromorphic hierarchical modular reservoirs
Filip Milisav
Andrea I Luppi
Laura E Suárez
Bratislav Mišić
Next-Token Prediction Should be Ambiguity-Sensitive: A Meta-Learning Perspective
The rapid adaptation ability of auto-regressive foundation models is often attributed to the diversity of their pre-training data. This is b… (voir plus)ecause, from a Bayesian standpoint, minimizing prediction error in such settings requires integrating over all plausible latent hypotheses consistent with observations. While this behavior is desirable in principle, it often proves too ambitious in practice: under high ambiguity, the number of plausible latent alternatives makes Bayes-optimal prediction computationally intractable. Cognitive science has long recognized this limitation, suggesting that under such conditions, heuristics or information-seeking strategies are preferable to exhaustive inference. Translating this insight to next-token prediction, we hypothesize that low- and high-ambiguity predictions pose different computational demands, making ambiguity-agnostic next-token prediction a detrimental inductive bias. To test this, we introduce MetaHMM, a synthetic sequence meta-learning benchmark with rich compositional structure and a tractable Bayesian oracle. We show that Transformers indeed struggle with high-ambiguity predictions across model sizes. Motivated by cognitive theories, we propose a method to convert pre-trained models into Monte Carlo predictors that decouple task inference from token prediction. Preliminary results show substantial gains in ambiguous contexts through improved capacity allocation and test-time scalable inference, though challenges remain.
Next-Token Prediction Should be Ambiguity-Sensitive: A Meta-Learning Perspective
The rapid adaptation ability of auto-regressive foundation models is often attributed to the diversity of their pre-training data. This is b… (voir plus)ecause, from a Bayesian standpoint, minimizing prediction error in such settings requires integrating over all plausible latent hypotheses consistent with observations. While this behavior is desirable in principle, it often proves too ambitious in practice: under high ambiguity, the number of plausible latent alternatives makes Bayes-optimal prediction computationally intractable. Cognitive science has long recognized this limitation, suggesting that under such conditions, heuristics or information-seeking strategies are preferable to exhaustive inference. Translating this insight to next-token prediction, we hypothesize that low- and high-ambiguity predictions pose different computational demands, making ambiguity-agnostic next-token prediction a detrimental inductive bias. To test this, we introduce MetaHMM, a synthetic sequence meta-learning benchmark with rich compositional structure and a tractable Bayesian oracle. We show that Transformers indeed struggle with high-ambiguity predictions across model sizes. Motivated by cognitive theories, we propose a method to convert pre-trained models into Monte Carlo predictors that decouple task inference from token prediction. Preliminary results show substantial gains in ambiguous contexts through improved capacity allocation and test-time scalable inference, though challenges remain.
Next-Token Prediction Should be Ambiguity-Sensitive : A Meta-Learing Perspective
Tracing the representation geometry of language models from pretraining to post-training
The geometry of representations in a neural network can significantly impact downstream generalization. It is unknown how representation geo… (voir plus)metry changes in large language models (LLMs) over pretraining and post-training. Here, we characterize the evolving geometry of LLM representations using spectral methods (effective rank and eigenspectrum decay). With the OLMo and Pythia model families we uncover a consistent non-monotonic sequence of three distinct geometric phases in pretraining. An initial \warmup phase sees rapid representational compression. This is followed by an "entropy-seeking" phase, characterized by expansion of the representation manifold's effective dimensionality, which correlates with an increase in memorization. Subsequently, a "compression seeking" phase imposes anisotropic consolidation, selectively preserving variance along dominant eigendirections while contracting others, correlating with improved downstream task performance. We link the emergence of these phases to the fundamental interplay of cross-entropy optimization, information bottleneck, and skewed data distribution. Additionally, we find that in post-training the representation geometry is further transformed: Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO) correlate with another "entropy-seeking" dynamic to integrate specific instructional or preferential data, reducing out-of-distribution robustness. Conversely, Reinforcement Learning with Verifiable Rewards (RLVR) often exhibits a "compression seeking" dynamic, consolidating reward-aligned behaviors and reducing the entropy in its output distribution. This work establishes the utility of spectral measures of representation geometry for understanding the multiphase learning dynamics within LLMs.
Generalizable, real-time neural decoding with hybrid state-space models
Avery Hee-Woon Ryoo
Nanda H Krishna
Mehdi Azabou
Eva L Dyer
Real-time decoding of neural activity is central to neuroscience and neurotechnology applications, from closed-loop experiments to brain-com… (voir plus)puter interfaces, where models are subject to strict latency constraints. Traditional methods, including simple recurrent neural networks, are fast and lightweight but often struggle to generalize to unseen data. In contrast, recent Transformer-based approaches leverage large-scale pretraining for strong generalization performance, but typically have much larger computational requirements and are not always suitable for low-resource or real-time settings. To address these shortcomings, we present POSSM, a novel hybrid architecture that combines individual spike tokenization via a cross-attention module with a recurrent state-space model (SSM) backbone to enable (1) fast and causal online prediction on neural activity and (2) efficient generalization to new sessions, individuals, and tasks through multi-dataset pretraining. We evaluate POSSM's decoding performance and inference speed on intracortical decoding of monkey motor tasks, and show that it extends to clinical applications, namely handwriting and speech decoding in human subjects. Notably, we demonstrate that pretraining on monkey motor-cortical recordings improves decoding performance on the human handwriting task, highlighting the exciting potential for cross-species transfer. In all of these tasks, we find that POSSM achieves decoding accuracy comparable to state-of-the-art Transformers, at a fraction of the inference cost (up to 9x faster on GPU). These results suggest that hybrid SSMs are a promising approach to bridging the gap between accuracy, inference speed, and generalization when training neural decoders for real-time, closed-loop applications.
MesaNet: Sequence Modeling by Locally Optimal Test-Time Training
Johannes Von Oswald
Seijin Kobayashi
Luca Versari
Songlin Yang
Maximilian Schlegel
Kaitlin Maile
Yanick Schimpf
Oliver Sieberling
Alexander Meulemans
Rif A. Saurous
Charlotte Frenkel
Blaise Aguera y Arcas
João Sacramento
Sequence modeling is currently dominated by causal transformer architectures that use softmax self-attention. Although widely adopted, trans… (voir plus)formers require scaling memory and compute linearly during inference. A recent stream of work linearized the softmax operation, resulting in powerful recurrent neural network (RNN) models with constant memory and compute costs such as DeltaNet, Mamba or xLSTM. These models can be unified by noting that their recurrent layer dynamics can all be derived from an in-context regression objective, approximately optimized through an online learning rule. Here, we join this line of work and introduce a numerically stable, chunkwise parallelizable version of the recently proposed Mesa layer (von Oswald et al., 2024), and study it in language modeling at the billion-parameter scale. This layer again stems from an in-context loss, but which is now minimized to optimality at every time point using a fast conjugate gradient solver. Through an extensive suite of experiments, we show that optimal test-time training enables reaching lower language modeling perplexity and higher downstream benchmark performance than previous RNNs, especially on tasks requiring long context understanding. This performance gain comes at the cost of additional flops spent during inference time. Our results are therefore intriguingly related to recent trends of increasing test-time compute to improve performance -- here by spending compute to solve sequential optimization problems within the neural network itself.
Generalizable, real-time neural decoding with hybrid state-space models
Avery Hee-Woon Ryoo
Nanda H Krishna
Mehdi Azabou
Eva L Dyer
Real-time decoding of neural activity is central to neuroscience and neurotechnology applications, from closed-loop experiments to brain-com… (voir plus)puter interfaces, where models are subject to strict latency constraints. Traditional methods, including simple recurrent neural networks, are fast and lightweight but often struggle to generalize to unseen data. In contrast, recent Transformer-based approaches leverage large-scale pretraining for strong generalization performance, but typically have much larger computational requirements and are not always suitable for low-resource or real-time settings. To address these shortcomings, we present POSSM, a novel hybrid architecture that combines individual spike tokenization via a cross-attention module with a recurrent state-space model (SSM) backbone to enable (1) fast and causal online prediction on neural activity and (2) efficient generalization to new sessions, individuals, and tasks through multi-dataset pretraining. We evaluate POSSM's decoding performance and inference speed on intracortical decoding of monkey motor tasks, and show that it extends to clinical applications, namely handwriting and speech decoding in human subjects. Notably, we demonstrate that pretraining on monkey motor-cortical recordings improves decoding performance on the human handwriting task, highlighting the exciting potential for cross-species transfer. In all of these tasks, we find that POSSM achieves decoding accuracy comparable to state-of-the-art Transformers, at a fraction of the inference cost (up to 9x faster on GPU). These results suggest that hybrid SSMs are a promising approach to bridging the gap between accuracy, inference speed, and generalization when training neural decoders for real-time, closed-loop applications.