Portrait de Dhanya Sridhar

Dhanya Sridhar

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure adjointe, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage de représentations
Apprentissage profond
Causalité
Modèles probabilistes
Raisonnement

Biographie

Dhanya Sridhar est professeure adjointe au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal, membre académique principale de Mila – Institut québécois d'intelligence artificielle et titulaire d'une chaire en IA Canada-CIFAR. Auparavant, elle a été chercheuse postdoctorale à l’Université Columbia. Elle a obtenu un doctorat de l’Université de la Californie à Santa Cruz. Ses recherches portent sur la combinaison de la causalité et de l'apprentissage automatique au service de systèmes d'IA qui sont résistants aux changements de distribution, s'adaptent efficacement à de nouvelles tâches et découvrent de nouvelles connaissances en même temps que nous.

Étudiants actuels

Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - Helmholtz AI
Visiteur de recherche indépendant - University of Maryland College Park
Doctorat - UdeM
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat
Superviseur⋅e principal⋅e :

Publications

General Causal Imputation via Synthetic Interventions
Marco Jiralerspong
Thomas Jiralerspong
Vedant Shah
Given two sets of elements (such as cell types and drug compounds), researchers typically only have access to a limited subset of their inte… (voir plus)ractions. The task of causal imputation involves using this subset to predict unobserved interactions. Squires et al. (2022) have proposed two estimators for this task based on the synthetic interventions (SI) estimator: SI-A (for actions) and SI-C (for contexts). We extend their work and introduce a novel causal imputation estimator, generalized synthetic interventions (GSI). We prove the identifiability of this estimator for data generated from a more complex latent factor model. On synthetic and real data we show empirically that it recovers or outperforms their estimators.
General Causal Imputation via Synthetic Interventions
Marco Jiralerspong
Thomas Jiralerspong
Vedant Shah
Evaluating Interventional Reasoning Capabilities of Large Language Models
Numerous decision-making tasks require estimating causal effects under interventions on different parts of a system. As practitioners consid… (voir plus)er using large language models (LLMs) to automate decisions, studying their causal reasoning capabilities becomes crucial. A recent line of work evaluates LLMs ability to retrieve commonsense causal facts, but these evaluations do not sufficiently assess how LLMs reason about interventions. Motivated by the role that interventions play in causal inference, in this paper, we conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention. We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning. These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts. Our analysis on four LLMs highlights that while GPT- 4 models show promising accuracy at predicting the intervention effects, they remain sensitive to distracting factors in the prompts.
In-Context Learning, Can It Break Safety?
Sophie Xhonneux
David Dobre
Michael Noukhovitch
Demystifying amortized causal discovery with transformers
Francesco Montagna
Max Cairney-Leeming
Francesco Locatello
Supervised learning approaches for causal discovery from observational data often achieve competitive performance despite seemingly avoiding… (voir plus) explicit assumptions that traditional methods make for identifiability. In this work, we investigate CSIvA \citep{ke2023learning}, a transformer-based model promising to train on synthetic data and transfer to real data. First, we bridge the gap with existing identifiability theory and show that constraints on the training data distribution implicitly define a prior on the test observations. Consistent with classical approaches, good performance is achieved when we have a good prior on the test data, and the underlying model is identifiable. At the same time, we find new trade-offs. Training on datasets generated from different classes of causal models, unambiguously identifiable in isolation, improves the test generalization. Performance is still guaranteed, as the ambiguous cases resulting from the mixture of identifiable causal models are unlikely to occur (which we formally prove). Overall, our study finds that amortized causal discovery still needs to obey identifiability theory, but it also differs from classical methods in how the assumptions are formulated, trading more reliance on assumptions on the noise type for fewer hypotheses on the mechanisms.
Does learning the right latent variables necessarily improve in-context learning?
Sarthak Mittal
Eric Elmoznino
L'eo Gagnon
Sangnie Bhardwaj
Large autoregressive models like Transformers can solve tasks through in-context learning (ICL) without learning new weights, suggesting ave… (voir plus)nues for efficiently solving new tasks. For many tasks, e.g., linear regression, the data factorizes: examples are independent given a task latent that generates the data, e.g., linear coefficients. While an optimal predictor leverages this factorization by inferring task latents, it is unclear if Transformers implicitly do so or if they instead exploit heuristics and statistical shortcuts enabled by attention layers. Both scenarios have inspired active ongoing work. In this paper, we systematically investigate the effect of explicitly inferring task latents. We minimally modify the Transformer architecture with a bottleneck designed to prevent shortcuts in favor of more structured solutions, and then compare performance against standard Transformers across various ICL tasks. Contrary to intuition and some recent works, we find little discernible difference between the two; biasing towards task-relevant latent variables does not lead to better out-of-distribution performance, in general. Curiously, we find that while the bottleneck effectively learns to extract latent task variables from context, downstream processing struggles to utilize them for robust prediction. Our study highlights the intrinsic limitations of Transformers in achieving structured ICL solutions that generalize, and shows that while inferring the right latents aids interpretability, it is not sufficient to alleviate this problem.
Explicit Knowledge Factorization Meets In-Context Learning: What Do We Gain?
Sarthak Mittal
Eric Elmoznino
Leo Gagnon
Sangnie Bhardwaj
In-Context Learning Can Re-learn Forbidden Tasks
Sophie Xhonneux
David Dobre
Despite significant investment into safety training, large language models (LLMs) deployed in the real world still suffer from numerous vuln… (voir plus)erabilities. One perspective on LLM safety training is that it algorithmically forbids the model from answering toxic or harmful queries. To assess the effectiveness of safety training, in this work, we study forbidden tasks, i.e., tasks the model is designed to refuse to answer. Specifically, we investigate whether in-context learning (ICL) can be used to re-learn forbidden tasks despite the explicit fine-tuning of the model to refuse them. We first examine a toy example of refusing sentiment classification to demonstrate the problem. Then, we use ICL on a model fine-tuned to refuse to summarise made-up news articles. Finally, we investigate whether ICL can undo safety training, which could represent a major security risk. For the safety task, we look at Vicuna-7B, Starling-7B, and Llama2-7B. We show that the attack works out-of-the-box on Starling-7B and Vicuna-7B but fails on Llama2-7B. Finally, we propose an ICL attack that uses the chat template tokens like a prompt injection attack to achieve a better attack success rate on Vicuna-7B and Starling-7B. Trigger Warning: the appendix contains LLM-generated text with violence, suicide, and misinformation.
Learning Macro Variables with Auto-encoders
Eric Elmoznino
Maitreyi Swaroop
Adjusting Machine Learning Decisions for Equal Opportunity and Counterfactual Fairness
Yixin Wang
David Blei
Machine learning ( ml ) methods have the potential to automate high-stakes decisions, such as bail admissions or credit lending, by analyzin… (voir plus)g and learning from historical data. But these algorithmic decisions may be unfair: in learning from historical data, they may replicate discriminatory practices from the past. In this paper, we propose two algorithms that adjust fitted ML predictors to produce decisions that are fair. Our methods provide post-hoc adjustments to the predictors, without requiring that they be retrained. We consider a causal model of the ML decisions, define fairness through counterfactual decisions within the model, and then form algorithmic decisions that capture the historical data as well as possible, but are provably fair. In particular, we consider two definitions of fairness. The first is “equal counterfactual opportunity,” where the counterfactual distribution of the decision is the same regardless of the protected attribute; the second is counterfactual fairness. We evaluate the algorithms, and the trade-o � between accuracy and fairness, on datasets about admissions, income, credit, and recidivism.
Identifiable Deep Generative Models via Sparse Decoding
Gemma Elyse Moran
Yixin Wang
David Blei
We develop the sparse VAE for unsupervised representation learning on high-dimensional data. The sparse VAE learns a set of latent factors … (voir plus)(representations) which summarize the associations in the observed data features. The underlying model is sparse in that each observed feature (i.e. each dimension of the data) depends on a small subset of the latent factors. As examples, in ratings data each movie is only described by a few genres; in text data each word is only applicable to a few topics; in genomics, each gene is active in only a few biological processes. We prove such sparse deep generative models are identifiable: with infinite data, the true model parameters can be learned. (In contrast, most deep generative models are not identifiable.) We empirically study the sparse VAE with both simulated and real data. We find that it recovers meaningful latent factors and has smaller heldout reconstruction error than related methods.
Causal inference from text: A commentary
David Blei