Hackathon | Créer une IA plus sécuritaire pour la santé mentale des jeunes
Du 16 au 23 mars 2026, rejoignez une communauté dynamique dédiée à exploiter la puissance de l'IA pour créer des solutions favorisant le bien-être mental des jeunes.
Apprenez à tirer parti de l’IA générative pour soutenir et améliorer votre productivité au travail. La prochaine cohorte se déroulera en ligne les 24 et 26 février 2026, en anglais.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Lecteur Multimédia
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Artificial Neural networks (ANN) trained on complex tasks are increasingly used in neuroscience to model brain dynamics, a process called br… (voir plus)ain encoding. Videogames have been extensively studied in the field of artificial intelligence, but have hardly been used yet for brain encoding. Videogames provide a promising framework to understand brain activity in a rich, engaging, and active environment. A major challenge raised by complex videogames is that individual behavior is highly variable across subjects, and we hypothesized that ANNs need to account for subject-specific behavior in order to properly capture brain dynamics. In this study, we used ANNs to model functional magnetic resonance imaging (fMRI) and behavioral gameplay data, both collected while subjects played the Shinobi III videogame. Using imitation learning, we trained an ANN to play the game while closely replicating the unique gameplay style of individual participants. We found that hidden layers of our imitation learning model successfully encoded task-relevant neural representations, and predicted individual brain dynamics with higher accuracy than models trained on other subjects’ gameplay or control models. The highest correlations between layer activations and brain signals were observed in biologically plausible brain areas, i.e. somatosensory, attention, and visual networks. Our results demonstrate that combining imitation learning, brain imaging, and videogames can allow us to model complex individual brain patterns derived from decision making in a rich, complex environment.