Portrait de Guillaume Lajoie

Guillaume Lajoie

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, Université de Montréal, Département de mathématiques et statistiques
Chercheur invité, Google
Sujets de recherche
Apprentissage de représentations
Apprentissage profond
Cognition
IA en santé
IA pour la science
Neurosciences computationnelles
Optimisation
Raisonnement
Réseaux de neurones récurrents
Systèmes dynamiques

Biographie

Guillaume Lajoie est professeur agrégé au Département de mathématiques et de statistiques (DMS) de l'Université de Montréal et membre académique principal de Mila – Institut québécois d’intelligence artificielle. Il est titulaire d'une chaire CIFAR (CCAI Canada) ainsi que d'une chaire de recherche du Canada (CRC) en calcul et interfaçage neuronaux.

Ses recherches sont positionnées à l'intersection de l'IA et des neurosciences où il développe des outils pour mieux comprendre les mécanismes d'intelligence communs aux systèmes biologiques et artificiels. Les contributions de son groupe de recherche vont des progrès des paradigmes d'apprentissage à plusieurs échelles pour les grands systèmes artificiels aux applications en neurotechnologie. Dr. Lajoie participe activement aux efforts de développement responsables de l'IA, cherchant à identifier les lignes directrices et les meilleures pratiques pour l'utilisation de l'IA dans la recherche et au-delà.

Étudiants actuels

Collaborateur·rice de recherche - ETH Zurich
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Postdoctorat - UdeM
Doctorat - UdeM
Postdoctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Maîtrise recherche - Polytechnique
Collaborateur·rice de recherche - Western Washington University (faculty; assistant prof))
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Collaborateur·rice de recherche - UdeM
Collaborateur·rice de recherche
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Doctorat - UdeM
Doctorat - McGill
Postdoctorat - UdeM
Stagiaire de recherche - Western Washington University

Publications

In-Context Parametric Inference: Point or Distribution Estimators?
Sarthak Mittal
Nikolay Malkin
Bayesian and frequentist inference are two fundamental paradigms in statistical estimation. Bayesian methods treat hypotheses as random vari… (voir plus)ables, incorporating priors and updating beliefs via Bayes' theorem, whereas frequentist methods assume fixed but unknown hypotheses, relying on estimators like maximum likelihood. While extensive research has compared these approaches, the frequentist paradigm of obtaining point estimates has become predominant in deep learning, as Bayesian inference is challenging due to the computational complexity and the approximation gap of posterior estimation methods. However, a good understanding of trade-offs between the two approaches is lacking in the regime of amortized estimators, where in-context learners are trained to estimate either point values via maximum likelihood or maximum a posteriori estimation, or full posteriors using normalizing flows, score-based diffusion samplers, or diagonal Gaussian approximations, conditioned on observations. To help resolve this, we conduct a rigorous comparative analysis spanning diverse problem settings, from linear models to shallow neural networks, with a robust evaluation framework assessing both in-distribution and out-of-distribution generalization on tractable tasks. Our experiments indicate that amortized point estimators generally outperform posterior inference, though the latter remain competitive in some low-dimensional problems, and we further discuss why this might be the case.
In-Context Parametric Inference: Point or Distribution Estimators?
Sarthak Mittal
Nikolay Malkin
Bayesian and frequentist inference are two fundamental paradigms in statistical estimation. Bayesian methods treat hypotheses as random vari… (voir plus)ables, incorporating priors and updating beliefs via Bayes' theorem, whereas frequentist methods assume fixed but unknown hypotheses, relying on estimators like maximum likelihood. While extensive research has compared these approaches, the frequentist paradigm of obtaining point estimates has become predominant in deep learning, as Bayesian inference is challenging due to the computational complexity and the approximation gap of posterior estimation methods. However, a good understanding of trade-offs between the two approaches is lacking in the regime of amortized estimators, where in-context learners are trained to estimate either point values via maximum likelihood or maximum a posteriori estimation, or full posteriors using normalizing flows, score-based diffusion samplers, or diagonal Gaussian approximations, conditioned on observations. To help resolve this, we conduct a rigorous comparative analysis spanning diverse problem settings, from linear models to shallow neural networks, with a robust evaluation framework assessing both in-distribution and out-of-distribution generalization on tractable tasks. Our experiments indicate that amortized point estimators generally outperform posterior inference, though the latter remain competitive in some low-dimensional problems, and we further discuss why this might be the case.
Amortized In-Context Bayesian Posterior Estimation
Sarthak Mittal
N. L. Bracher
Priyank Jaini
Marcus Brubaker
Bayesian inference provides a natural way of incorporating prior beliefs and assigning a probability measure to the space of hypotheses. Cur… (voir plus)rent solutions rely on iterative routines like Markov Chain Monte Carlo (MCMC) sampling and Variational Inference (VI), which need to be re-run whenever new observations are available. Amortization, through conditional estimation, is a viable strategy to alleviate such difficulties and has been the guiding principle behind simulation-based inference, neural processes and in-context methods using pre-trained models. In this work, we conduct a thorough comparative analysis of amortized in-context Bayesian posterior estimation methods from the lens of different optimization objectives and architectural choices. Such methods train an amortized estimator to perform posterior parameter inference by conditioning on a set of data examples passed as context to a sequence model such as a transformer. In contrast to language models, we leverage permutation invariant architectures as the true posterior is invariant to the ordering of context examples. Our empirical study includes generalization to out-of-distribution tasks, cases where the assumed underlying model is misspecified, and transfer from simulated to real problems. Subsequently, it highlights the superiority of the reverse KL estimator for predictive problems, especially when combined with the transformer architecture and normalizing flows.
Amortized In-Context Bayesian Posterior Estimation
Sarthak Mittal
N. L. Bracher
Priyank Jaini
Marcus Brubaker
Bayesian inference provides a natural way of incorporating prior beliefs and assigning a probability measure to the space of hypotheses. Cur… (voir plus)rent solutions rely on iterative routines like Markov Chain Monte Carlo (MCMC) sampling and Variational Inference (VI), which need to be re-run whenever new observations are available. Amortization, through conditional estimation, is a viable strategy to alleviate such difficulties and has been the guiding principle behind simulation-based inference, neural processes and in-context methods using pre-trained models. In this work, we conduct a thorough comparative analysis of amortized in-context Bayesian posterior estimation methods from the lens of different optimization objectives and architectural choices. Such methods train an amortized estimator to perform posterior parameter inference by conditioning on a set of data examples passed as context to a sequence model such as a transformer. In contrast to language models, we leverage permutation invariant architectures as the true posterior is invariant to the ordering of context examples. Our empirical study includes generalization to out-of-distribution tasks, cases where the assumed underlying model is misspecified, and transfer from simulated to real problems. Subsequently, it highlights the superiority of the reverse KL estimator for predictive problems, especially when combined with the transformer architecture and normalizing flows.
Accelerating Training with Neuron Interaction and Nowcasting Networks
Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However,… (voir plus) learnable update rules can be costly and unstable to train and use. A simpler recently proposed approach to accelerate training is to use Adam for most of the optimization steps and periodically, only every few steps, nowcast (predict future) parameters. We improve this approach by Neuron interaction and Nowcasting (NiNo) networks. NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters by learning in a supervised way from a set of training trajectories over multiple tasks. We show that in some networks, such as Transformers, neuron connectivity is non-trivial. By accurately modeling neuron connectivity, we allow NiNo to accelerate Adam training by up to 50\% in vision and language tasks.
Expressivity of Neural Networks with Random Weights and Learned Biases
Ezekiel Williams
Avery Hee-Woon Ryoo
Thomas Jiralerspong
Alexandre Payeur
Luca Mazzucato
Learning Versatile Optimizers on a Compute Diet
Abhinav Moudgil
Boris Knyazev
Learned optimization has emerged as a promising alternative to hand-crafted optimizers, with the potential to discover stronger learned upda… (voir plus)te rules that enable faster, hyperparameter-free training of neural networks. A critical element for practically useful learned optimizers, that can be used off-the-shelf after meta-training, is strong meta-generalization: the ability to apply the optimizers to new tasks. Recent state-of-the-art work in learned optimizers, VeLO (Metz et al., 2022), requires a large number of highly diverse meta-training tasks along with massive computational resources, 4000 TPU months, to achieve meta-generalization. This makes further improvements to such learned optimizers impractical. In this work, we identify several key elements in learned optimizer architectures and meta-training procedures that can lead to strong meta-generalization. We also propose evaluation metrics to reliably assess quantitative performance of an optimizer at scale on a set of evaluation tasks. Our proposed approach, Celo, makes a significant leap in improving the meta-generalization performance of learned optimizers and also outperforms tuned state-of-the-art optimizers on a diverse set of out-of-distribution tasks, despite being meta-trained for just 24 GPU hours.
Learning Versatile Optimizers on a Compute Diet
Abhinav Moudgil
Boris Knyazev
Learned optimization has emerged as a promising alternative to hand-crafted optimizers, with the potential to discover stronger learned upda… (voir plus)te rules that enable faster, hyperparameter-free training of neural networks. A critical element for practically useful learned optimizers, that can be used off-the-shelf after meta-training, is strong meta-generalization: the ability to apply the optimizers to new tasks. Recent state-of-the-art work in learned optimizers, VeLO (Metz et al., 2022), requires a large number of highly diverse meta-training tasks along with massive computational resources, 4000 TPU months, to achieve meta-generalization. This makes further improvements to such learned optimizers impractical. In this work, we identify several key elements in learned optimizer architectures and meta-training procedures that can lead to strong meta-generalization. We also propose evaluation metrics to reliably assess quantitative performance of an optimizer at scale on a set of evaluation tasks. Our proposed approach, Celo, makes a significant leap in improving the meta-generalization performance of learned optimizers and also outperforms tuned state-of-the-art optimizers on a diverse set of out-of-distribution tasks, despite being meta-trained for just 24 GPU hours.
Multi-agent cooperation through learning-aware policy gradients
Alexander Meulemans
Seijin Kobayashi
Johannes Von Oswald
Nino Scherrer
Eric Elmoznino
Blaise Aguera y Arcas
João Sacramento
Self-interested individuals often fail to cooperate, posing a fundamental challenge for multi-agent learning. How can we achieve cooperation… (voir plus) among self-interested, independent learning agents? Promising recent work has shown that in certain tasks cooperation can be established between learning-aware agents who model the learning dynamics of each other. Here, we present the first unbiased, higher-derivative-free policy gradient algorithm for learning-aware reinforcement learning, which takes into account that other agents are themselves learning through trial and error based on multiple noisy trials. We then leverage efficient sequence models to condition behavior on long observation histories that contain traces of the learning dynamics of other agents. Training long-context policies with our algorithm leads to cooperative behavior and high returns on standard social dilemmas, including a challenging environment where temporally-extended action coordination is required. Finally, we derive from the iterated prisoner's dilemma a novel explanation for how and when cooperation arises among self-interested learning-aware agents.
The oneirogen hypothesis: modeling the hallucinatory effects of classical psychedelics in terms of replay-dependent plasticity mechanisms
Colin Bredenberg
Fabrice Normandin
Classical psychedelics induce complex visual hallucinations in humans, generating percepts that are co-herent at a low level, but which have… (voir plus) surreal, dream-like qualities at a high level. While there are many hypotheses as to how classical psychedelics could induce these effects, there are no concrete mechanistic models that capture the variety of observed effects in humans, while remaining consistent with the known pharmacological effects of classical psychedelics on neural circuits. In this work, we propose the “oneirogen hypothesis”, which posits that the perceptual effects of classical psychedelics are a result of their pharmacological actions inducing neural activity states that truly are more similar to dream-like states. We simulate classical psychedelics’ effects via manipulating neural network models trained on perceptual tasks with the Wake-Sleep algorithm. This established machine learning algorithm leverages two activity phases, a perceptual phase (wake) where sensory inputs are encoded, and a generative phase (dream) where the network internally generates activity consistent with stimulus-evoked responses. We simulate the action of psychedelics by partially shifting the model to the ‘Sleep’ state, which entails a greater influence of top-down connections, in line with the impact of psychedelics on apical dendrites. The effects resulting from this manipulation capture a number of experimentally observed phenomena including the emergence of hallucinations, increases in stimulus-conditioned variability, and large increases in synaptic plasticity. We further provide a number of testable predictions which could be used to validate or invalidate our oneirogen hypothesis.
Robust prior-biased acquisition function for human-in-the-loop Bayesian optimization
Rose Guay-Hottin
Lison Kardassevitch
Hugo Pham
Brain-like learning with exponentiated gradients
Jonathan Cornford
Roman Pogodin
Arna Ghosh
Kaiwen Sheng
Brendan A. Bicknell
Olivier Codol
Beverley A. Clark