Hackathon | Créer une IA plus sécuritaire pour la santé mentale des jeunes
Du 16 au 23 mars 2026, rejoignez une communauté dynamique dédiée à exploiter la puissance de l'IA pour créer des solutions favorisant le bien-être mental des jeunes.
Apprenez à tirer parti de l’IA générative pour soutenir et améliorer votre productivité au travail. La prochaine cohorte se déroulera en ligne les 24 et 26 février 2026, en anglais.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Lecteur Multimédia
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Recent advances in neural decoding have led to the development of large-scale deep learning-based neural decoders that can generalize across… (voir plus) sessions and subjects. However, existing approaches predominantly focus on single modalities of neural activity, limiting their applicability to specific modalities and tasks. In this work, we present a multimodal extension of the POYO framework that jointly processes neuronal spikes and local field potentials (LFPs) for behavioural decoding. Our approach employs flexible tokenization schemes for both spikes and LFPs, enabling efficient processing of heterogeneous neural populations without preprocessing requirements like binning. Through experiments on data from nonhuman primates performing motor tasks, we demonstrate that multimodal pretraining yields superior decoding performance compared to unimodal baselines. We also show evidence of cross-modal transfer: models pretrained on both modalities outperform LFP-only models when fine-tuned solely on LFPs, suggesting a path toward more cost-effective brain-computer interfaces that can use performant LFP-based decoders. Our models also exhibit robustness to missing modalities during inference when trained with modality masking, and scale effectively with both model size and pretraining data. Overall, this work represents an important first step towards unified, general-purpose neural decoders capable of leveraging diverse neural signals for a variety of brain-computer interface applications.