Portrait de Siva Reddy

Siva Reddy

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, McGill University, École d'informatique et Département de linguistique
Sujets de recherche
Apprentissage de représentations
Apprentissage profond
Raisonnement
Traitement du langage naturel

Biographie

Siva Reddy est professeur adjoint en informatique et linguistique à l’Université McGill. Ses travaux portent sur les algorithmes qui permettent aux ordinateurs de comprendre et de traiter les langues humaines. Il a fait ses études postdoctorales avec le Stanford NLP Group. Son expertise inclut la construction de symboliques linguistiques et induites et de modèles d’apprentissage profond pour le langage.

Étudiants actuels

Doctorat - McGill
Maîtrise recherche - McGill
Collaborateur·rice de recherche
Doctorat - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Collaborateur·rice alumni - UNIVERSITÄT DES SAARLANDES
Doctorat - McGill
Co-superviseur⋅e :
Stagiaire de recherche - McGill
Postdoctorat - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche
Collaborateur·rice alumni - McGill
Stagiaire de recherche - McGill
Collaborateur·rice alumni - McGill

Publications

Exploiting Instruction-Following Retrievers for Malicious Information Retrieval
Parishad BehnamGhader
Nicholas Meade
The BrowserGym Ecosystem for Web Agent Research
Thibault Le Sellier de Chezelles
Alexandre Lacoste
Massimo Caccia
Léo Boisvert
Megh Thakkar
Tom Marty
Rim Assouel
Sahar Omidi Shayegan
Lawrence Keunho Jang
Xing Han Lu
Ori Yoran
Dehan Kong
Frank F. Xu
Graham Neubig
Russ Salakhutdinov
The BrowserGym ecosystem addresses the growing need for efficient evaluation and benchmarking of web agents, particularly those leveraging a… (voir plus)utomation and Large Language Models (LLMs) for web interaction tasks. Many existing benchmarks suffer from fragmentation and inconsistent evaluation methodologies, making it challenging to achieve reliable comparisons and reproducible results. BrowserGym aims to solve this by providing a unified, gym-like environment with well-defined observation and action spaces, facilitating standardized evaluation across diverse benchmarks. Combined with AgentLab, a complementary framework that aids in agent creation, testing, and analysis, BrowserGym offers flexibility for integrating new benchmarks while ensuring consistent evaluation and comprehensive experiment management. This standardized approach seeks to reduce the time and complexity of developing web agents, supporting more reliable comparisons and facilitating in-depth analysis of agent behaviors, and could result in more adaptable, capable agents, ultimately accelerating innovation in LLM-driven automation. As a supporting evidence, we conduct the first large-scale, multi-benchmark web agent experiment and compare the performance of 6 state-of-the-art LLMs across all benchmarks currently available in BrowserGym. Among other findings, our results highlight a large discrepancy between OpenAI and Anthropic's latests models, with Claude-3.5-Sonnet leading the way on almost all benchmarks, except on vision-related tasks where GPT-4o is superior. Despite these advancements, our results emphasize that building robust and efficient web agents remains a significant challenge, due to the inherent complexity of real-world web environments and the limitations of current models.
SafeArena: Evaluating the Safety of Autonomous Web Agents
Ada Defne Tur
Nicholas Meade
Xing Han Lu
Alejandra Zambrano
Arkil Patel
Esin Durmus
Spandana Gella
Karolina Sta'nczak
Societal Alignment Frameworks Can Improve LLM Alignment
Karolina Stanczak
Nicholas Meade
Mehar Bhatia
Hattie Zhou
Konstantin Böttinger
Jeremy Barnes
Jason Stanley
Jessica Montgomery
Richard Zemel
Nicolas Papernot
Denis Therien
Timothy P. Lillicrap
Ana Marasovic
Sylvie Delacroix
Gillian K. Hadfield
Recent progress in large language models (LLMs) has focused on producing responses that meet human expectations and align with shared values… (voir plus) - a process coined alignment. However, aligning LLMs remains challenging due to the inherent disconnect between the complexity of human values and the narrow nature of the technological approaches designed to address them. Current alignment methods often lead to misspecified objectives, reflecting the broader issue of incomplete contracts, the impracticality of specifying a contract between a model developer, and the model that accounts for every scenario in LLM alignment. In this paper, we argue that improving LLM alignment requires incorporating insights from societal alignment frameworks, including social, economic, and contractual alignment, and discuss potential solutions drawn from these domains. Given the role of uncertainty within societal alignment frameworks, we then investigate how it manifests in LLM alignment. We end our discussion by offering an alternative view on LLM alignment, framing the underspecified nature of its objectives as an opportunity rather than perfect their specification. Beyond technical improvements in LLM alignment, we discuss the need for participatory alignment interface designs.
WebMMU: A Benchmark for Multimodal Multilingual Website Understanding and Code Generation
Rabiul Awal
Mahsa Massoud
Zichao Li
Aarash Feizi
Suyuchen Wang
David Vazquez
Juan A. Rodriguez
Perouz Taslakian
Spandana Gella
Sai Rajeswar
Understanding diverse web data and automating web development presents an exciting challenge for agentic AI. While existing benchmarks addre… (voir plus)ss isolated web-based tasks—such as website-based Visual Question Answering (VQA) and UI-to-code generation—they lack a unified evaluation suite for assessing web agents that interact with and reason about web environments. We introduce WebMMU, a large-scale benchmark for evaluating AI-driven web agents across multilingual website VQA, HTML/CSS/JavaScript code editing, and sketch-to-code generation. WebMMU provides a comprehensive evaluation suite with real-world website data, multi-step reasoning tasks, and functional UI understanding. Benchmarking state-of-the-art multimodal models on WebMMU reveals significant limitations in web-based reasoning, layout understanding, and structured code generation, particularly in preserving UI hierarchy, handling multilingual content, and producing robust, functional code. While most existing models are optimized for English-only settings, WebMMU highlights the challenges of cross-lingual adaptation in real-world web development. These findings expose critical gaps in current models’ ability to understand website structures, execute user instructions, and generate high-quality web code, underscoring the need for more advanced multimodal reasoning in AI-driven web understanding and development.
Exploiting Instruction-Following Retrievers for Malicious Information Retrieval
Parishad BehnamGhader
Nicholas Meade
Instruction-following retrievers have been widely adopted alongside LLMs in real-world applications, but little work has investigated the sa… (voir plus)fety risks surrounding their increasing search capabilities. We empirically study the ability of retrievers to satisfy malicious queries, both when used directly and when used in a retrieval augmented generation-based setup. Concretely, we investigate six leading retrievers, including NV-Embed and LLM2Vec, and find that given malicious requests, most retrievers can (for >50% of queries) select relevant harmful passages. For example, LLM2Vec correctly selects passages for 61.35% of our malicious queries. We further uncover an emerging risk with instruction-following retrievers, where highly relevant harmful information can be surfaced by exploiting their instruction-following capabilities. Finally, we show that even safety-aligned LLMs, such as Llama3, can satisfy malicious requests when provided with harmful retrieved passages in-context. In summary, our findings underscore the malicious misuse risks associated with increasing retriever capability.
Large language models deconstruct the clinical intuition behind diagnosing autism
Jack Stanley
Emmett Rabot
L. Mottron
SafeArena: Evaluating the Safety of Autonomous Web Agents
Ada Defne Tur
Nicholas Meade
Xing Han Lu
Alejandra Zambrano
Arkil Patel
Esin Durmus
Spandana Gella
Karolina Stanczak
Societal Alignment Frameworks Can Improve LLM Alignment
Karolina Sta'nczak
Nicholas Meade
Mehar Bhatia
Hattie Zhou
Konstantin Böttinger
Jeremy Barnes
Jason Stanley
Jessica Montgomery
Richard Zemel
Nicolas Papernot
Denis Therien
Timothy P. Lillicrap
Ana Marasovi'c
Sylvie Delacroix
Gillian K. Hadfield
How to Get Your LLM to Generate Challenging Problems for Evaluation
The pace of evolution of Large Language Models (LLMs) necessitates new approaches for rigorous and comprehensive evaluation. Traditional hum… (voir plus)an annotation is increasingly impracticable due to the complexities and costs involved in generating high-quality, challenging problems, particularly for tasks such as long-context reasoning. Moreover, the rapid saturation of existing human-curated benchmarks by LLMs further necessitates the need to develop scalable and automatically renewable evaluation methodologies. In this work, we introduce **CHASE**, a unified framework to synthetically generate challenging problems using LLMs without human involvement. For a given task, our approach builds a hard problem in a bottom-up manner from simpler components. Moreover since we want to generate synthetic data for evaluation, our framework decomposes the generation process into independently verifiable sub-tasks, thereby ensuring a high level of quality and correctness. We implement CHASE to create evaluation benchmarks across three diverse domains: document-based question answering, repository-level code completion, and math reasoning. The performance of state-of-the-art LLMs on these synthetic benchmarks lies in the range of 40-60\% accuracy, thereby demonstrating the effectiveness of our framework at generating hard problems. Our experiments further reveal that the Gemini models significantly outperform other LLMs at long-context reasoning, and that the performance of all LLMs drastically drops by as much as 70\% when we scale up the context size to 50k tokens.
Warmup Generations: A Task-Agnostic Approach for Guiding Sequence-to-Sequence Learning with Unsupervised Initial State Generation
Senyu Li
Zipeng Sun
Jiayi Wang
Pontus Stenetorp
ReTreever: Tree-based Coarse-to-Fine Representations for Retrieval
Shubham Gupta
Zichao Li
Tianyi Chen
Perouz Taslakian
Valentina Zantedeschi