Portrait de Spandana Gella n'est pas disponible

Spandana Gella

Collaborateur·rice de recherche
Superviseur⋅e principal⋅e
Sujets de recherche
Traitement du langage naturel

Publications

SafeArena: Evaluating the Safety of Autonomous Web Agents
LLM-based agents are becoming increasingly proficient at solving web-based tasks. With this capability comes a greater risk of misuse for ma… (voir plus)licious purposes, such as posting misinformation in an online forum or selling illicit substances on a website. To evaluate these risks, we propose SafeArena, a benchmark focused on the deliberate misuse of web agents. SafeArena comprises 250 safe and 250 harmful tasks across four websites. We classify the harmful tasks into five harm categories—misinformation, illegal activity, harassment, cybercrime, and social bias, designed to assess realistic misuses of web agents. We evaluate leading LLM-based web agents, including GPT-4o, Claude-3.5 Sonnet, Qwen-2-VL 72B, and Llama-3.2 90B, on our benchmark. To systematically assess their susceptibility to harmful tasks, we introduce the Agent Risk Assessment framework that categorizes agent behavior across four risk levels. We find agents are surprisingly compliant with malicious requests, with GPT-4o and Qwen-2 completing 34.7% and 27.3% of harmful requests, respectively. Our findings highlight the urgent need for safety alignment procedures for web agents.
UI-Vision: A Desktop-centric GUI Benchmark for Visual Perception and Interaction
Xiangru Jian
Kevin Qinghong Lin
Juan A. Rodriguez
Montek Kalsi
M. Tamer Özsu
David Vazquez
Sai Rajeswar
Autonomous agents that navigate Graphical User Interfaces (GUIs) to automate tasks like document editing and file management can greatly enh… (voir plus)ance computer workflows. While existing research focuses on online settings, desktop environments, critical for many professional and everyday tasks, remain underexplored due to data collection challenges and licensing issues. We introduce UI-Vision, the first comprehensive, license-permissive benchmark for offline, fine-grained evaluation of computer use agents in real-world desktop environments. Unlike online benchmarks, UI-Vision provides: (i) dense, high-quality annotations of human demonstrations, including bounding boxes, UI labels, and action trajectories (clicks, drags, and keyboard inputs) across 83 software applications, and (ii) three fine-to-coarse grained tasks—Element Grounding, Layout Grounding, and Action Prediction—with well-defined metrics to rigorously evaluate agents’ performance in desktop environments. Our evaluation reveals critical limitations in state-of-the-art models like UI-TARS-72B, including issues with understanding professional software, spatial reasoning, and complex actions like drag-and-drop. These findings highlight the challenges in developing fully autonomous computer-use agents. With UI-Vision, we aim to advance the development of more capable agents for real-world desktop tasks.
DRBench: A Realistic Benchmark for Enterprise Deep Research
Amirhossein Abaskohi
Tianyi Chen
Miguel Muñoz-Mármol
Curtis Fox
Amrutha Varshini Ramesh
Étienne Marcotte
Issam Hadj Laradji
We introduce DRBench, a benchmark for evaluating AI agents on complex, open-ended deep research tasks in enterprise settings. Unlike prior b… (voir plus)enchmarks that focus on simple questions or web-only queries, DRBench evaluates agents on multi-step queries (for example, ``What changes should we make to our product roadmap to ensure compliance with this standard?") that require identifying supporting facts from both the public web and private company knowledge base. Each task is grounded in realistic user personas and enterprise context, spanning a heterogeneous search space that includes productivity software, cloud file systems, emails, chat conversations, and the open web. Tasks are generated through a carefully designed synthesis pipeline with human-in-the-loop verification, and agents are evaluated on their ability to recall relevant insights, maintain factual accuracy, and produce coherent, well-structured reports. We release 15 deep research tasks across 10 domains, such as Sales, Cybersecurity, and Compliance. We demonstrate the effectiveness of DRBench by evaluating diverse DR agents across open- and closed-source models (such as GPT, Llama, and Qwen) and DR strategies, highlighting their strengths, weaknesses, and the critical path for advancing enterprise deep research. Code is available at https://github.com/ServiceNow/drbench.
WebMMU: A Benchmark for Multimodal Multilingual Website Understanding and Code Generation
David Vazquez
Juan A. Rodriguez
Sai Rajeswar
ServiceNow
WebMMU Benchmark
We present WebMMU, a multilingual benchmark that evaluates three core web tasks: (1) website visual question answering, (2) code editing inv… (voir plus)olving HTML/CSS/JavaScript, and (3) mockup-to-code generation. Unlike prior benchmarks that treat these tasks separately, WebMMU unifies them using expert-annotated, real-world web data to assess models'abilities in complex multi-step reasoning, precise element grounding, and functional UI comprehension and coding. Our evaluation shows that while multimodal large language models (MLLMs) perform well on basic information extraction, they struggle with reasoning and grounding, editing code to preserve functionality, and generating design-to-code that maintains hierarchy and supports multilingual content. These findings reveal key limitations in current MLLMs and underscore the need for improved multimodal and cross-lingual reasoning to build future web agents capable of automating diverse web development tasks.
WebMMU: A Benchmark for Multimodal Multilingual Website Understanding and Code Generation
We present WebMMU, a multilingual benchmark that evaluates three core web tasks: (1) website visual question answering, (2) code editing inv… (voir plus)olving HTML/CSS/JavaScript, and (3) mockup-to-code generation. Unlike prior benchmarks that treat these tasks separately, WebMMU unifies them using expert-annotated, real-world web data to assess models' abilities in complex multi-step reasoning, precise element grounding, and functional UI comprehension and coding. Our evaluation shows that while multimodal large language models (MLLMs) perform well on basic information extraction, they struggle with reasoning and grounding, editing code to preserve functionality, and generating design-to-code that maintains hierarchy and supports multilingual content. These findings reveal key limitations in current MLLMs and underscore the need for improved multimodal and cross-lingual reasoning to build future web agents capable of automating diverse web development tasks.
BigCharts-R1: Enhanced Chart Reasoning with Visual Reinforcement Finetuning
Masoud Hashemi
Juan A. Rodriguez
Khyati Mahajan
Vikas Yadav
Sathwik Tejaswi Madhusudhan
David Vazquez
Enamul Hoque
Sai Rajeswar
Rendering-Aware Reinforcement Learning for Vector Graphics Generation
Juan A. Rodriguez
Haotian Zhang
Rishav Pramanik
Pascal Wichmann
Arnab Mondal
Mohammad Reza Samsami
Sai Rajeswar
David Vazquez
Scalable Vector Graphics (SVG) offer a powerful format for representing visual designs as interpretable code. Recent advances in vision-lang… (voir plus)uage models (VLMs) have enabled high-quality SVG generation by framing the problem as a code generation task and leveraging large-scale pretraining. VLMs are particularly suitable for this task as they capture both global semantics and fine-grained visual patterns, while transferring knowledge across vision, natural language, and code domains. However, existing VLM approaches often struggle to produce faithful and efficient SVGs because they never observe the rendered images during training. Although differentiable rendering for autoregressive SVG code generation remains unavailable, rendered outputs can still be compared to original inputs, enabling evaluative feedback suitable for reinforcement learning (RL). We introduce RLRF(Reinforcement Learning from Rendering Feedback), an RL method that enhances SVG generation in autoregressive VLMs by leveraging feedback from rendered SVG outputs. Given an input image, the model generates SVG roll-outs that are rendered and compared to the original image to compute a reward. This visual fidelity feedback guides the model toward producing more accurate, efficient, and semantically coherent SVGs. RLRF significantly outperforms supervised fine-tuning, addressing common failure modes and enabling precise, high-quality SVG generation with strong structural understanding and generalization.
SafeArena: Evaluating the Safety of Autonomous Web Agents
UI-Vision: A Desktop-centric GUI Benchmark for Visual Perception and Interaction
Xiangru Jian
Kevin Qinghong Lin
Juan A. Rodriguez
Montek Kalsi
M. Tamer Özsu
David Vazquez
Sai Rajeswar
Human Annotator
AgentAda: Skill-Adaptive Data Analytics for Tailored Insight Discovery
Amirhossein Abaskohi
Amrutha Varshini Ramesh
Shailesh Nanisetty
David Vazquez
Giuseppe Carenini
Issam Hadj Laradji
AgentAda: Skill-Adaptive Data Analytics for Tailored Insight Discovery
Amirhossein Abaskohi
Amrutha Varshini Ramesh
Shailesh Nanisetty
David Vazquez
Giuseppe Carenini
Issam Hadj Laradji
StarFlow: Generating Structured Workflow Outputs From Sketch Images
Chao Wang
Amirhossein Abaskohi
Juan A. Rodriguez
David Vazquez
Sai Rajeswar