Portrait de Siva Reddy

Siva Reddy

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, McGill University, École d'informatique et Département de linguistique
Sujets de recherche
Apprentissage de représentations
Apprentissage profond
Raisonnement
Traitement du langage naturel

Biographie

Siva Reddy est professeur adjoint en informatique et linguistique à l’Université McGill. Ses travaux portent sur les algorithmes qui permettent aux ordinateurs de comprendre et de traiter les langues humaines. Il a fait ses études postdoctorales avec le Stanford NLP Group. Son expertise inclut la construction de symboliques linguistiques et induites et de modèles d’apprentissage profond pour le langage.

Étudiants actuels

Doctorat - McGill
Maîtrise recherche - McGill
Collaborateur·rice de recherche - University of Edinburgh
Maîtrise recherche - McGill
Co-superviseur⋅e :
Collaborateur·rice de recherche
Doctorat - McGill
Co-superviseur⋅e :
Collaborateur·rice de recherche - INSA Lyon, France
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Collaborateur·rice alumni - UNIVERSITÄT DES SAARLANDES
Doctorat - McGill
Co-superviseur⋅e :
Maîtrise recherche - McGill
Co-superviseur⋅e :
Maîtrise recherche - McGill
Postdoctorat - McGill
Collaborateur·rice de recherche
Doctorat - McGill
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni
Collaborateur·rice alumni - McGill
Stagiaire de recherche - McGill
Collaborateur·rice alumni - McGill

Publications

WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
Zdeněk Kasner
We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve… (voir plus) real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WEBLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx
WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
Zdeněk Kasner
We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve… (voir plus) real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WEBLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx
Data science opportunities of large language models for neuroscience and biomedicine
Andrew Thieme
Oleksiy Levkovskyy
Paul Wren
Thomas Ray
Data science opportunities of large language models for neuroscience and biomedicine
Andrew Thieme
Oleksiy Levkovskyy
Paul Wren
Thomas Ray
Data science opportunities of large language models for neuroscience and biomedicine
Andrew Thieme
Oleksiy Levkovskyy
Paul Wren
Thomas Ray
Data science opportunities of large language models for neuroscience and biomedicine
Andrew Thieme
Oleksiy Levkovskyy
Paul Wren
Thomas Ray
Benchmarking Vision Language Models for Cultural Understanding
Sjoerd van Steenkiste
Lisa Anne Hendricks
Karolina Stanczak
Foundation models and vision-language pre-training have notably advanced Vision Language Models (VLMs), enabling multimodal processing of vi… (voir plus)sual and linguistic data. However, their performance has been typically assessed on general scene understanding - recognizing objects, attributes, and actions - rather than cultural comprehension. This study introduces CulturalVQA, a visual question-answering benchmark aimed at assessing VLM's geo-diverse cultural understanding. We curate a collection of 2,378 image-question pairs with 1-5 answers per question representing cultures from 11 countries across 5 continents. The questions probe understanding of various facets of culture such as clothing, food, drinks, rituals, and traditions. Benchmarking VLMs on CulturalVQA, including GPT-4V and Gemini, reveals disparity in their level of cultural understanding across regions, with strong cultural understanding capabilities for North America while significantly lower performance for Africa. We observe disparity in their performance across cultural facets too, with clothing, rituals, and traditions seeing higher performances than food and drink. These disparities help us identify areas where VLMs lack cultural understanding and demonstrate the potential of CulturalVQA as a comprehensive evaluation set for gauging VLM progress in understanding diverse cultures.
Evaluating In-Context Learning of Libraries for Code Generation
Contemporary Large Language Models (LLMs) exhibit a high degree of code generation and comprehension capability. A particularly promising ar… (voir plus)ea is their ability to interpret code modules from unfamiliar libraries for solving user-instructed tasks. Recent work has shown that large proprietary LLMs can learn novel library usage in-context from demonstrations. These results raise several open questions: whether demonstrations of library usage is required, whether smaller (and more open) models also possess such capabilities, etc. In this work, we take a broader approach by systematically evaluating a diverse array of LLMs across three scenarios reflecting varying levels of domain specialization to understand their abilities and limitations in generating code based on libraries defined in-context. Our results show that even smaller open-source LLMs like Llama-2 and StarCoder demonstrate an adept understanding of novel code libraries based on specification presented in-context. Our findings further reveal that LLMs exhibit a surprisingly high proficiency in learning novel library modules even when provided with just natural language descriptions or raw code implementations of the functions, which are often cheaper to obtain than demonstrations. Overall, our results pave the way for harnessing LLMs in more adaptable and dynamic coding environments.
Scope Ambiguities in Large Language Models
Sebastian Schuster
Sowmya Vajjala
StarCoder: may the source be with you!
Raymond Li
Loubna Ben allal
Yangtian Zi
Niklas Muennighoff
Denis Kocetkov
Chenghao Mou
Marc Marone
Christopher Akiki
Jia LI
Jenny Chim
Qian Liu
Evgenii Zheltonozhskii
Terry Yue Zhuo
Thomas Wang
Olivier Dehaene
Mishig Davaadorj
Joel Lamy-Poirier
Joao Monteiro
Oleh Shliazhko
Nicolas Gontier … (voir 49 de plus)
Armel Zebaze
Ming-Ho Yee
Logesh Kumar Umapathi
Jian Zhu
Ben Lipkin
Muhtasham Oblokulov
Zhiruo Wang
Rudra Murthy
Jason T Stillerman
Siva Sankalp Patel
Dmitry Abulkhanov
Marco Zocca
Manan Dey
Zhihan Zhang
N. Fahmy
Urvashi Bhattacharyya
Wenhao Yu
Swayam Singh
Sasha Luccioni
Paulo Villegas
M. Kunakov
Jan Ebert
Fedor Zhdanov
Manuel Romero
Tony Lee
Nadav Timor
Jennifer Ding
Claire S Schlesinger
Hailey Schoelkopf
Jana Ebert
Tri Dao
Mayank Mishra
Alex Gu
Jennifer Robinson
Sean Hughes
Carolyn Jane Anderson
Brendan Dolan-Gavitt
Danish Contractor
Daniel Fried
Yacine Jernite
Carlos Muñoz Ferrandis
Sean M. Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
Harm de Vries
The BigCode community, an open-scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs)… (voir plus), introduces StarCoder and StarCoderBase: 15.5B parameter models with 8K context length, infilling capabilities and fast large-batch inference enabled by multi-query attention. StarCoderBase is trained on 1 trillion tokens sourced from The Stack, a large collection of permissively licensed GitHub repositories with inspection tools and an opt-out process. We fine-tuned StarCoderBase on 35B Python tokens, resulting in the creation of StarCoder. We perform the most comprehensive evaluation of Code LLMs to date and show that StarCoderBase outperforms every open Code LLM that supports multiple programming languages and matches or outperforms the OpenAI code-cushman-001 model. Furthermore, StarCoder outperforms every model that is fine-tuned on Python and still retains its performance on other programming languages. We take several important steps towards a safe open-access model release, including an improved PII redaction pipeline and a novel attribution tracing tool, and make the StarCoder models publicly available under a more commercially viable version of the Open Responsible AI Model license.
Can Retriever-Augmented Language Models Reason? The Blame Game Between the Retriever and the Language Model
Augmenting pretrained language models with retrievers to select the supporting documents has shown promise in effectively solving common NLP… (voir plus) problems, including language modeling and question answering, in an interpretable way. In this paper, we first study the strengths and weaknesses of different retriever-augmented language models (REALM,
Using In-Context Learning to Improve Dialogue Safety
Devamanyu Hazarika
Prakhar Gupta
Di Jin
Yang Liu
Dilek Hakkani-Tur