Portrait de Vaibhav Adlakha n'est pas disponible

Vaibhav Adlakha

Doctorat - McGill
Superviseur⋅e principal⋅e
Sujets de recherche
Traitement du langage naturel

Publications

DeepSeek-R1 Thoughtology: Let's think about LLM Reasoning
DeepSeek-R1 Thoughtology: Let's think about LLM Reasoning
Large Reasoning Models like DeepSeek-R1 mark a fundamental shift in how LLMs approach complex problems. Instead of directly producing an ans… (voir plus)wer for a given input, DeepSeek-R1 creates detailed multi-step reasoning chains, seemingly"thinking"about a problem before providing an answer. This reasoning process is publicly available to the user, creating endless opportunities for studying the reasoning behaviour of the model and opening up the field of Thoughtology. Starting from a taxonomy of DeepSeek-R1's basic building blocks of reasoning, our analyses on DeepSeek-R1 investigate the impact and controllability of thought length, management of long or confusing contexts, cultural and safety concerns, and the status of DeepSeek-R1 vis-\`a-vis cognitive phenomena, such as human-like language processing and world modelling. Our findings paint a nuanced picture. Notably, we show DeepSeek-R1 has a 'sweet spot' of reasoning, where extra inference time can impair model performance. Furthermore, we find a tendency for DeepSeek-R1 to persistently ruminate on previously explored problem formulations, obstructing further exploration. We also note strong safety vulnerabilities of DeepSeek-R1 compared to its non-reasoning counterpart, which can also compromise safety-aligned LLMs.
MMTEB: Massive Multilingual Text Embedding Benchmark
Kenneth Enevoldsen
Isaac Chung
Márton Kardos
Ashwin Mathur
David Stap
Jay Gala
Wissam Siblini
Dominik Krzemiński
Genta Indra Winata
Saba Sturua
Saiteja Utpala
Mathieu Ciancone
Marion Schaeffer
Gabriel Sequeira
Shreeya Dhakal
Jonathan Rystrøm
Roman Solomatin
Ömer Veysel Çağatan … (voir 66 de plus)
Akash Kundu
Martin Bernstorff
Shitao Xiao
Akshita Sukhlecha
Bhavish Pahwa
Rafał Poświata
Kranthi Kiran GV
Shawon Ashraf
Daniel Auras
Björn Plüster
Jan Philipp Harries
Loïc Magne
Isabelle Mohr
Mariya Hendriksen
Dawei Zhu
Hippolyte Gisserot-Boukhlef
Tom Aarsen
Jan Kostkan
Konrad Wojtasik
Taemin Lee
Marek Suppa
Crystina Zhang
Roberta Rocca
Mohammed Hamdy
Andrianos Michail
John Yang
Manuel Faysse
Aleksei Vatolin
Nandan Thakur
Manan Dey
Dipam Vasani
Pranjal A Chitale
Simone Tedeschi
Nguyen Tai
Artem Snegirev
Michael Günther
Mengzhou Xia
Weijia Shi
Jordan Clive
Gayatri K
Maksimova Anna
Silvan Wehrli
Maria Tikhonova
Henil Shalin Panchal
Aleksandr Abramov
Malte Ostendorff
Zheng Liu
Simon Clematide
Lester James Validad Miranda
Alena Fenogenova
Guangyu Song
Ruqiya Bin Safi
Wen-Ding Li
Alessia Borghini
Federico Cassano
Hongjin Su
Jimmy Lin
Howard Yen
Lasse Hansen
Sara Hooker
Chenghao Xiao
Orion Weller
Niklas Muennighoff
Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address… (voir plus) these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost.
MMTEB: Massive Multilingual Text Embedding Benchmark
Kenneth Enevoldsen
Isaac Chung
Márton Kardos
Ashwin Mathur
David Stap
Jay Gala
Wissam Siblini
Dominik Krzemiński
Genta Indra Winata
Saba Sturua
Saiteja Utpala
Mathieu Ciancone
Marion Schaeffer
Shreeya Dhakal
Jonathan Rystrøm
Roman Solomatin
Ömer Veysel Çağatan
Akash Kundu … (voir 62 de plus)
Martin Bernstorff
Shitao Xiao
Akshita Sukhlecha
Bhavish Pahwa
Rafał Poświata
Kranthi Kiran GV
Shawon Ashraf
Daniel Auras
Björn Plüster
Jan Philipp Harries
Loïc Magne
Isabelle Mohr
Dawei Zhu
Hippolyte Gisserot-Boukhlef
Tom Aarsen
Jan Kostkan
Konrad Wojtasik
Taemin Lee
Marek Suppa
Crystina Zhang
Roberta Rocca
Mohammed Hamdy
Andrianos Michail
John Yang
Manuel Faysse
Aleksei Vatolin
Nandan Thakur
Manan Dey
Dipam Vasani
Pranjal A Chitale
Simone Tedeschi
Nguyen Tai
Artem Snegirev
Mariya Hendriksen
Michael Günther
Mengzhou Xia
Weijia Shi
Jordan Clive
Gayatri K
Maksimova Anna
Silvan Wehrli
Maria Tikhonova
Henil Shalin Panchal
Aleksandr Abramov
Malte Ostendorff
Zheng Liu
Simon Clematide
Lester James Validad Miranda
Alena Fenogenova
Guangyu Song
Ruqiya Bin Safi
Wen-Ding Li
Alessia Borghini
Federico Cassano
Lasse Hansen
Sara Hooker
Chenghao Xiao
Orion Weller
Niklas Muennighoff
Text embeddings are typically evaluated on a narrow set of tasks, limited in terms of languages, domains, and task types. To circumvent this… (voir plus) limitation and to provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) -- a large-scale community-driven initiative expanding MTEB to over 500 quality-controlled evaluation tasks across 1,000+ languages. MMTEB includes a wide range of challenging novel tasks such as instruction following, long-document retrieval, and code retrieval, and represents the largest multilingual collection of evaluation tasks for embedding models to date. We use this collection to construct multiple highly multilingual benchmarks. We evaluate a representative set of models on these benchmarks. Our findings indicate that, while LLM-based models can achieve state-of-the-art performance on a subset of languages, the best-performing publicly available model across languages is the notably smaller, multilingual-e5-large-instruct. Massive benchmarks often impose high computational demands, limiting accessibility, particularly for low-resource communities. To address this, we downsample tasks based on inter-task correlation (i.e., selecting only a diverse set of tasks) while preserving relative rankings. We further optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks at a significantly lower computational cost. For instance, we introduce a new zero-shot English benchmark that maintains a similar ordering at a fraction of the cost.
MMTEB: Massive Multilingual Text Embedding Benchmark
Kenneth Enevoldsen
Isaac Chung
Márton Kardos
Ashwin Mathur
David Stap
Jay Gala
Wissam Siblini
Dominik Krzemiński
Genta Indra Winata
Saba Sturua
Saiteja Utpala
Mathieu Ciancone
Marion Schaeffer
Gabriel Sequeira
Shreeya Dhakal
Jonathan Rystrøm
Roman Solomatin
Ömer Veysel Çağatan … (voir 66 de plus)
Akash Kundu
Martin Bernstorff
Shitao Xiao
Akshita Sukhlecha
Bhavish Pahwa
Rafał Poświata
Kranthi Kiran GV
Shawon Ashraf
Daniel Auras
Björn Plüster
Jan Philipp Harries
Loïc Magne
Isabelle Mohr
Mariya Hendriksen
Dawei Zhu
Hippolyte Gisserot-Boukhlef
Tom Aarsen
Jan Kostkan
Konrad Wojtasik
Taemin Lee
Marek Suppa
Crystina Zhang
Roberta Rocca
Mohammed Hamdy
Andrianos Michail
John Yang
Manuel Faysse
Aleksei Vatolin
Nandan Thakur
Manan Dey
Dipam Vasani
Pranjal A Chitale
Simone Tedeschi
Nguyen Tai
Artem Snegirev
Michael Günther
Mengzhou Xia
Weijia Shi
Jordan Clive
Gayatri K
Maksimova Anna
Silvan Wehrli
Maria Tikhonova
Henil Shalin Panchal
Aleksandr Abramov
Malte Ostendorff
Zheng Liu
Simon Clematide
Lester James Validad Miranda
Alena Fenogenova
Guangyu Song
Ruqiya Bin Safi
Wen-Ding Li
Alessia Borghini
Federico Cassano
Hongjin Su
Jimmy Lin
Howard Yen
Lasse Hansen
Sara Hooker
Chenghao Xiao
Orion Weller
Niklas Muennighoff
Text embeddings are typically evaluated on a narrow set of tasks, limited in terms of languages, domains, and task types. To circumvent this… (voir plus) limitation and to provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) -- a large-scale community-driven initiative expanding MTEB to over 500 quality-controlled evaluation tasks across 1,000+ languages. MMTEB includes a wide range of challenging novel tasks such as instruction following, long-document retrieval, and code retrieval, and represents the largest multilingual collection of evaluation tasks for embedding models to date. We use this collection to construct multiple highly multilingual benchmarks. We evaluate a representative set of models on these benchmarks. Our findings indicate that, while LLM-based models can achieve state-of-the-art performance on a subset of languages, the best-performing publicly available model across languages is the notably smaller, multilingual-e5-large-instruct. Massive benchmarks often impose high computational demands, limiting accessibility, particularly for low-resource communities. To address this, we downsample tasks based on inter-task correlation (i.e., selecting only a diverse set of tasks) while preserving relative rankings. We further optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks at a significantly lower computational cost. For instance, we introduce a new zero-shot English benchmark that maintains a similar ordering at a fraction of the cost.
LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as … (voir plus)question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa
LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
Large decoder-only language models (LLMs) are the state-of-the-art models on most of today's NLP tasks and benchmarks. Yet, the community is… (voir plus) only slowly adopting these models for text embedding tasks, which require rich contextualized representations. In this work, we introduce LLM2Vec, a simple unsupervised approach that can transform any decoder-only LLM into a strong text encoder. LLM2Vec consists of three simple steps: 1) enabling bidirectional attention, 2) masked next token prediction, and 3) unsupervised contrastive learning. We demonstrate the effectiveness of LLM2Vec by applying it to 4 popular LLMs ranging from 1.3B to 8B parameters and evaluate the transformed models on English word- and sequence-level tasks. We outperform encoder-only models by a large margin on word-level tasks and reach a new unsupervised state-of-the-art performance on the Massive Text Embeddings Benchmark (MTEB). Moreover, when combining LLM2Vec with supervised contrastive learning, we achieve state-of-the-art performance on MTEB among models that train only on publicly available data (as of May 24, 2024). Our strong empirical results and extensive analysis demonstrate that LLMs can be effectively transformed into universal text encoders in a parameter-efficient manner without the need for expensive adaptation or synthetic GPT-4 generated data.
LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
Large decoder-only language models (LLMs) are the state-of-the-art models on most of today's NLP tasks and benchmarks. Yet, the community is… (voir plus) only slowly adopting these models for text embedding tasks, which require rich contextualized representations. In this work, we introduce LLM2Vec, a simple unsupervised approach that can transform any decoder-only LLM into a strong text encoder. LLM2Vec consists of three simple steps: 1) enabling bidirectional attention, 2) masked next token prediction, and 3) unsupervised contrastive learning. We demonstrate the effectiveness of LLM2Vec by applying it to 4 popular LLMs ranging from 1.3B to 8B parameters and evaluate the transformed models on English word- and sequence-level tasks. We outperform encoder-only models by a large margin on word-level tasks and reach a new unsupervised state-of-the-art performance on the Massive Text Embeddings Benchmark (MTEB). Moreover, when combining LLM2Vec with supervised contrastive learning, we achieve state-of-the-art performance on MTEB among models that train only on publicly available data (as of May 24, 2024). Our strong empirical results and extensive analysis demonstrate that LLMs can be effectively transformed into universal text encoders in a parameter-efficient manner without the need for expensive adaptation or synthetic GPT-4 generated data.
LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
Large decoder-only language models (LLMs) are the state-of-the-art models on most of today's NLP tasks and benchmarks. Yet, the community is… (voir plus) only slowly adopting these models for text embedding tasks, which require rich contextualized representations. In this work, we introduce LLM2Vec, a simple unsupervised approach that can transform any decoder-only LLM into a strong text encoder. LLM2Vec consists of three simple steps: 1) enabling bidirectional attention, 2) masked next token prediction, and 3) unsupervised contrastive learning. We demonstrate the effectiveness of LLM2Vec by applying it to 4 popular LLMs ranging from 1.3B to 8B parameters and evaluate the transformed models on English word- and sequence-level tasks. We outperform encoder-only models by a large margin on word-level tasks and reach a new unsupervised state-of-the-art performance on the Massive Text Embeddings Benchmark (MTEB). Moreover, when combining LLM2Vec with supervised contrastive learning, we achieve state-of-the-art performance on MTEB among models that train only on publicly available data (as of May 24, 2024). Our strong empirical results and extensive analysis demonstrate that LLMs can be effectively transformed into universal text encoders in a parameter-efficient manner without the need for expensive adaptation or synthetic GPT-4 generated data.
LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
Large decoder-only language models (LLMs) are the state-of-the-art models on most of today's NLP tasks and benchmarks. Yet, the community is… (voir plus) only slowly adopting these models for text embedding tasks, which require rich contextualized representations. In this work, we introduce LLM2Vec, a simple unsupervised approach that can transform any decoder-only LLM into a strong text encoder. LLM2Vec consists of three simple steps: 1) enabling bidirectional attention, 2) masked next token prediction, and 3) unsupervised contrastive learning. We demonstrate the effectiveness of LLM2Vec by applying it to 3 popular LLMs ranging from 1.3B to 7B parameters and evaluate the transformed models on English word- and sequence-level tasks. We outperform encoder-only models by a large margin on word-level tasks and reach a new unsupervised state-of-the-art performance on the Massive Text Embeddings Benchmark (MTEB). Moreover, when combining LLM2Vec with supervised contrastive learning, we achieve state-of-the-art performance on MTEB among models that train only on publicly available data. Our strong empirical results and extensive analysis demonstrate that LLMs can be effectively transformed into universal text encoders in a parameter-efficient manner without the need for expensive adaptation or synthetic GPT-4 generated data.