Portrait de Doina Precup

Doina Precup

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure agrégée, McGill University, École d'informatique
Chef d'équipe de recherche, Google DeepMind
Sujets de recherche
Apprentissage automatique médical
Apprentissage par renforcement
Modèles probabilistes
Modélisation moléculaire
Raisonnement

Biographie

Doina Precup enseigne à l'Université McGill tout en menant des recherches fondamentales sur l'apprentissage par renforcement, notamment les applications de l'IA dans des domaines ayant des répercussions sociales, tels que les soins de santé. Elle s'intéresse à la prise de décision automatique dans des situations d'incertitude élevée.

Elle est membre de l'Institut canadien de recherches avancées (CIFAR) et de l'Association pour l'avancement de l'intelligence artificielle (AAAI), et dirige le bureau montréalais de DeepMind.

Ses spécialités sont les suivantes : intelligence artificielle, apprentissage machine, apprentissage par renforcement, raisonnement et planification sous incertitude, applications.

Étudiants actuels

Doctorat - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Stagiaire de recherche - McGill
Stagiaire de recherche - McGill
Doctorat - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Maîtrise recherche - McGill
Co-superviseur⋅e :
Doctorat - McGill
Stagiaire de recherche - McGill
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - McGill
Maîtrise recherche - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Doctorat - McGill
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Collaborateur·rice de recherche - McGill
Maîtrise recherche - UdeM
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Maîtrise recherche - McGill
Doctorat - McGill
Doctorat - McGill
Co-superviseur⋅e :
Stagiaire de recherche - McGill
Stagiaire de recherche - McGill
Baccalauréat - McGill
Doctorat - McGill
Doctorat - McGill
Co-superviseur⋅e :

Publications

Identifying and Addressing Delusions for Target-Directed Decision-Making
Harry Zhao
Mingde Zhao
Tristan Sylvain
We are interested in target-directed agents, which produce targets during decision-time planning, to guide their behaviors and achieve bette… (voir plus)r generalization during evaluation. Improper training of these agents can result in delusions: the agent may come to hold false beliefs about the targets, which cannot be properly rejected, leading to unwanted behaviors and damaging out-of-distribution generalization. We identify different types of delusions by using intuitive examples in carefully controlled environments, and investigate their causes. We demonstrate how delusions can be addressed for agents trained by hindsight relabeling, a mainstream approach in for training target-directed RL agents. We validate empirically the effectiveness of the proposed solutions in correcting delusional behaviors and improving out-of-distribution generalization.
Mitigating Downstream Model Risks via Model Provenance
Keyu Wang
Abdullah Norozi Iranzad
Scott Schaffter
Jonathan Lebensold
Research and industry are rapidly advancing the innovation and adoption of foundation model-based systems, yet the tools for managing these … (voir plus)models have not kept pace. Understanding the provenance and lineage of models is critical for researchers, industry, regulators, and public trust. While model cards and system cards were designed to provide transparency, they fall short in key areas: tracing model genealogy, enabling machine readability, offering reliable centralized management systems, and fostering consistent creation incentives. This challenge mirrors issues in software supply chain security, but AI/ML remains at an earlier stage of maturity. Addressing these gaps requires industry-standard tooling that can be adopted by foundation model publishers, open-source model innovators, and major distribution platforms. We propose a machine-readable model specification format to simplify the creation of model records, thereby reducing error-prone human effort, notably when a new model inherits most of its design from a foundation model. Our solution explicitly traces relationships between upstream and downstream models, enhancing transparency and traceability across the model lifecycle. To facilitate the adoption, we introduce the unified model record (UMR) repository , a semantically versioned system that automates the publication of model records to multiple formats (PDF, HTML, LaTeX) and provides a hosted web interface (https://modelrecord.com/). This proof of concept aims to set a new standard for managing foundation models, bridging the gap between innovation and responsible model management.
EnzymeFlow: Generating Reaction-specific Enzyme Catalytic Pockets through Flow Matching and Co-Evolutionary Dynamics
Chenqing Hua
Yong Liu
Dinghuai Zhang
Odin Zhang
Sitao Luan
Kevin K. Yang
Shuangjia Zheng
Training Language Models to Self-Correct via Reinforcement Learning
Aviral Kumar
Vincent Zhuang
Rishabh Agarwal
Yi Su
John D Co-Reyes
Avi Singh
Kate Baumli
Shariq N Iqbal
Colton Bishop
Rebecca Roelofs
Lei M Zhang
Kay McKinney
Disha Shrivastava
Cosmin Paduraru
George Tucker
Feryal Behbahani
Aleksandra Faust
Self-correction is a highly desirable capability of large language models (LLMs), yet it has consistently been found to be largely ineffecti… (voir plus)ve in modern LLMs. Existing approaches for training self-correction either require multiple models or rely on a more capable model or other forms of supervision. To this end, we develop a multi-turn online reinforcement learning (RL) approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data. To build SCoRe, we first show that variants of supervised fine-tuning (SFT) on offline model-generated correction traces are insufficient for instilling self-correction behavior. In particular, we observe that training via SFT either suffers from a distribution mismatch between the training data and the model's own responses or implicitly prefers only a certain mode of correction behavior that is often not effective at test time. SCoRe addresses these challenges by training under the model's own distribution of self-generated correction traces and using appropriate regularization to steer the learning process into learning a self-correction strategy that is effective at test time as opposed to simply fitting high-reward responses for a given prompt. This regularization prescribes running a first phase of RL on a base model to generate a policy initialization that is less susceptible to collapse and then using a reward bonus to amplify self-correction during training. When applied to Gemini 1.0 Pro and 1.5 Flash models, we find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on the MATH and HumanEval benchmarks.
An Attentive Approach for Building Partial Reasoning Agents from Pixels
Safa Alver
We study the problem of building reasoning agents that are able to generalize in an effective manner. Towards this goal, we propose an end-t… (voir plus)o-end approach for building model-based reinforcement learning agents that dynamically focus their reasoning to the relevant aspects of the environment: after automatically identifying the distinct aspects of the environment, these agents dynamically filter out the relevant ones and then pass them to their simulator to perform partial reasoning. Unlike existing approaches, our approach works with pixel-based inputs and it allows for interpreting the focal points of the agent. Our quantitative analyses show that the proposed approach allows for effective generalization in high-dimensional domains with raw observational inputs. We also perform ablation analyses to validate our design choices. Finally, we demonstrate through qualitative analyses that our approach actually allows for building agents that focus their reasoning on the relevant aspects of the environment.
An Attentive Approach for Building Partial Reasoning Agents from Pixels
Safa Alver
We study the problem of building reasoning agents that are able to generalize in an effective manner. Towards this goal, we propose an end-t… (voir plus)o-end approach for building model-based reinforcement learning agents that dynamically focus their reasoning to the relevant aspects of the environment: after automatically identifying the distinct aspects of the environment, these agents dynamically filter out the relevant ones and then pass them to their simulator to perform partial reasoning. Unlike existing approaches, our approach works with pixel-based inputs and it allows for interpreting the focal points of the agent. Our quantitative analyses show that the proposed approach allows for effective generalization in high-dimensional domains with raw observational inputs. We also perform ablation analyses to validate of design choices. Finally, we demonstrate through qualitative analyses that our approach actually allows for building agents that focus their reasoning on the relevant aspects of the environment.
Reactzyme: A Benchmark for Enzyme-Reaction Prediction
Chenqing Hua
Bozitao Zhong
Sitao Luan
Liang Hong
Shuangjia Zheng
Adaptive Exploration for Data-Efficient General Value Function Evaluations
Arushi Jain
Josiah P. Hanna
General Value Functions (GVFs) (Sutton et al, 2011) are an established way to represent predictive knowledge in reinforcement learning. Each… (voir plus) GVF computes the expected return for a given policy, based on a unique pseudo-reward. Multiple GVFs can be estimated in parallel using off-policy learning from a single stream of data, often sourced from a fixed behavior policy or pre-collected dataset. This leaves an open question: how can behavior policy be chosen for data-efficient GVF learning? To address this gap, we propose GVFExplorer, which aims at learning a behavior policy that efficiently gathers data for evaluating multiple GVFs in parallel. This behavior policy selects actions in proportion to the total variance in the return across all GVFs, reducing the number of environmental interactions. To enable accurate variance estimation, we use a recently proposed temporal-difference-style variance estimator. We prove that each behavior policy update reduces the mean squared error in the summed predictions over all GVFs. We empirically demonstrate our method's performance in both tabular representations and nonlinear function approximation.
A Look at Value-Based Decision-Time vs. Background Planning Methods Across Different Settings
Safa Alver
In model-based reinforcement learning (RL), an agent can leverage a learned model to improve its way of behaving in different ways. Two of t… (voir plus)he prevalent ways to do this are through decision-time and background planning methods. In this study, we are interested in understanding how the value-based versions of these two planning methods will compare against each other across different settings. Towards this goal, we first consider the simplest instantiations of value-based decision-time and background planning methods and provide theoretical results on which one will perform better in the regular RL and transfer learning settings. Then, we consider the modern instantiations of them and provide hypotheses on which one will perform better in the same settings. Finally, we perform illustrative experiments to validate these theoretical results and hypotheses. Overall, our findings suggest that even though value-based versions of the two planning methods perform on par in their simplest instantiations, the modern instantiations of value-based decision-time planning methods can perform on par or better than the modern instantiations of value-based background planning methods in both the regular RL and transfer learning settings.
The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges
Sitao Luan
Chenqing Hua
Qincheng Lu
Liheng Ma
Lirong Wu
Xinyu Wang
Minkai Xu
Xiao-Wen Chang
Rex Ying
Stan Z. Li
Stefanie Jegelka
Homophily principle, \ie{} nodes with the same labels or similar attributes are more likely to be connected, has been commonly believed to b… (voir plus)e the main reason for the superiority of Graph Neural Networks (GNNs) over traditional Neural Networks (NNs) on graph-structured data, especially on node-level tasks. However, recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory. Heterophily, i.e. low homophily, has been considered the main cause of this empirical observation. People have begun to revisit and re-evaluate most existing graph models, including graph transformer and its variants, in the heterophily scenario across various kinds of graphs, e.g. heterogeneous graphs, temporal graphs and hypergraphs. Moreover, numerous graph-related applications are found to be closely related to the heterophily problem. In the past few years, considerable effort has been devoted to studying and addressing the heterophily issue. In this survey, we provide a comprehensive review of the latest progress on heterophilic graph learning, including an extensive summary of benchmark datasets and evaluation of homophily metrics on synthetic graphs, meticulous classification of the most updated supervised and unsupervised learning methods, thorough digestion of the theoretical analysis on homophily/heterophily, and broad exploration of the heterophily-related applications. Notably, through detailed experiments, we are the first to categorize benchmark heterophilic datasets into three sub-categories: malignant, benign and ambiguous heterophily. Malignant and ambiguous datasets are identified as the real challenging datasets to test the effectiveness of new models on the heterophily challenge. Finally, we propose several challenges and future directions for heterophilic graph representation learning.
Functional Acceleration for Policy Mirror Descent
Veronica Chelu
We apply functional acceleration to the Policy Mirror Descent (PMD) general family of algorithms, which cover a wide range of novel and fund… (voir plus)amental methods in Reinforcement Learning (RL). Leveraging duality, we propose a momentum-based PMD update. By taking the functional route, our approach is independent of the policy parametrization and applicable to large-scale optimization, covering previous applications of momentum at the level of policy parameters as a special case. We theoretically analyze several properties of this approach and complement with a numerical ablation study, which serves to illustrate the policy optimization dynamics on the value polytope, relative to different algorithmic design choices in this space. We further characterize numerically several features of the problem setting relevant for functional acceleration, and lastly, we investigate the impact of approximation on their learning mechanics.
Functional Acceleration for Policy Mirror Descent
Veronica Chelu