Portrait de Flemming Kondrup

Flemming Kondrup

Postdoctorat - McGill
Superviseur⋅e principal⋅e
Sujets de recherche
Apprentissage automatique médical
Apprentissage par renforcement
Apprentissage profond

Publications

Cracking the Code of Action: A Generative Approach to Affordances for Reinforcement Learning
Agents that can autonomously navigate the web through a graphical user interface (GUI) using a unified action space (e.g., mouse and keyboar… (voir plus)d actions) can require very large amounts of domain-specific expert demonstrations to achieve good performance. Low sample efficiency is often exacerbated in sparse-reward and large-action-space environments, such as a web GUI, where only a few actions are relevant in any given situation. In this work, we consider the low-data regime, with limited or no access to expert behavior. To enable sample-efficient learning, we explore the effect of constraining the action space through intent-based affordances -- i.e., considering in any situation only the subset of actions that achieve a desired outcome. We propose **Code as Generative Affordances**
Cracking the Code of Action: a Generative Approach to Affordances for Reinforcement Learning
Agents that can autonomously navigate the web through a graphical user interface (GUI) using a unified action space (e.g., mouse and keyboar… (voir plus)d actions) can require very large amounts of domain-specific expert demonstrations to achieve good performance. Low sample efficiency is often exacerbated in sparse-reward and large-action-space environments, such as a web GUI, where only a few actions are relevant in any given situation. In this work, we consider the low-data regime, with limited or no access to expert behavior. To enable sample-efficient learning, we explore the effect of constraining the action space through *intent-based affordances* -- i.e., considering in any situation only the subset of actions that achieve a desired outcome. We propose **Code as Generative Affordances (
Forecaster: Towards Temporally Abstract Tree-Search Planning from Pixels
The ability to plan at many different levels of abstraction enables agents to envision the long-term repercussions of their decisions and th… (voir plus)us enables sample-efficient learning. This becomes particularly beneficial in complex environments from high-dimensional state space such as pixels, where the goal is distant and the reward sparse. We introduce Forecaster, a deep hierarchical reinforcement learning approach which plans over high-level goals leveraging a temporally abstract world model. Forecaster learns an abstract model of its environment by modelling the transitions dynamics at an abstract level and training a world model on such transition. It then uses this world model to choose optimal high-level goals through a tree-search planning procedure. It additionally trains a low-level policy that learns to reach those goals. Our method not only captures building world models with longer horizons, but also, planning with such models in downstream tasks. We empirically demonstrate Forecaster's potential in both single-task learning and generalization to new tasks in the AntMaze domain.
Towards Safe Mechanical Ventilation Treatment Using Deep Offline Reinforcement Learning
Nathan de Lara
Jacob A. Shkrob
My Duc Tran