Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Agents that can autonomously navigate the web through a graphical user interface (GUI) using a unified action space (e.g., mouse and keyboar… (see more)d actions) can require very large amounts of domain-specific expert demonstrations to achieve good performance. Low sample efficiency is often exacerbated in sparse-reward and large-action-space environments, such as a web GUI, where only a few actions are relevant in any given situation. In this work, we consider the low-data regime, with limited or no access to expert behavior. To enable sample-efficient learning, we explore the effect of constraining the action space through intent-based affordances -- i.e., considering in any situation only the subset of actions that achieve a desired outcome. We propose **Code as Generative Affordances**
Agents that can autonomously navigate the web through a graphical user interface (GUI) using a unified action space (e.g., mouse and keyboar… (see more)d actions) can require very large amounts of domain-specific expert demonstrations to achieve good performance. Low sample efficiency is often exacerbated in sparse-reward and large-action-space environments, such as a web GUI, where only a few actions are relevant in any given situation. In this work, we consider the low-data regime, with limited or no access to expert behavior. To enable sample-efficient learning, we explore the effect of constraining the action space through *intent-based affordances* -- i.e., considering in any situation only the subset of actions that achieve a desired outcome. We propose **Code as Generative Affordances (
The ability to plan at many different levels of abstraction enables agents to envision the long-term repercussions of their decisions and th… (see more)us enables sample-efficient learning. This becomes particularly beneficial in complex environments from high-dimensional state space such as pixels, where the goal is distant and the reward sparse. We introduce Forecaster, a deep hierarchical reinforcement learning approach which plans over high-level goals leveraging a temporally abstract world model. Forecaster learns an abstract model of its environment by modelling the transitions dynamics at an abstract level and training a world model on such transition. It then uses this world model to choose optimal high-level goals through a tree-search planning procedure. It additionally trains a low-level policy that learns to reach those goals. Our method not only captures building world models with longer horizons, but also, planning with such models in downstream tasks. We empirically demonstrate Forecaster's potential in both single-task learning and generalization to new tasks in the AntMaze domain.