Portrait de Samira Ebrahimi Kahou

Samira Ebrahimi Kahou

Membre affilié
Chaire en IA Canada-CIFAR
Professeure adjointe, University of Calgary, Départment de génie électrique et logiciel
Professeure adjointe, École de technologie suprérieure, Département de génie logiciel et technologies de l'information
Professeure adjointe, McGill University, École d'informatique
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage multimodal
Apprentissage par renforcement
Apprentissage profond
Traitement du langage naturel
Vision par ordinateur

Biographie

Je suis professeure adjointe à l'Université de Calgary, à l'école d'ingénierie Schulich au département de génie électrique et logiciel. Je suis aussi professeure adjointe au département de génie logiciel et technologies de l'information de l'École de technologie supérieure (ÉTS) et professeure adjointe à l'école d'informatique de l’Université McGill. Avant de me joindre à l'ÉTS, j'ai été stagiaire postdoctorale auprès de la professeure Doina Precup à l’Université McGill / Mila – Institut québécois d’intelligence artificielle. Préalablement à mon postdoctorat, j'ai été chercheuse à Microsoft Research, à Montréal. J'ai obtenu mon doctorat à Polytechnique Montréal / Mila en 2016 sous la supervision du professeur Chris Pal. Pendant mes études doctorales, j'ai travaillé sur la vision par ordinateur et l'apprentissage profond appliqués à la reconnaissance des émotions, au suivi d'objets et à la distillation de connaissances.

Étudiants actuels

Maîtrise recherche - École de technologie suprérieure
Doctorat - École de technologie suprérieure
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Stagiaire de recherche - McGill
Maîtrise recherche - École de technologie suprérieure
Superviseur⋅e principal⋅e :
Maîtrise recherche - École de technologie suprérieure
Doctorat - École de technologie suprérieure
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Maîtrise recherche - École de technologie suprérieure
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - École de technologie suprérieure
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :

Publications

Empowering Clinicians with Medical Decision Transformers: A Framework for Sepsis Treatment
Aamer Abdul Rahman
Pranav Agarwal
Rita Noumeir
Philippe Jouvet
Vincent Michalski
Offline reinforcement learning has shown promise for solving tasks in safety-critical settings, such as clinical decision support. Its appli… (voir plus)cation, however, has been limited by the lack of interpretability and interactivity for clinicians. To address these challenges, we propose the medical decision transformer (MeDT), a novel and versatile framework based on the goal-conditioned reinforcement learning paradigm for sepsis treatment recommendation. MeDT uses the decision transformer architecture to learn a policy for drug dosage recommendation. During offline training, MeDT utilizes collected treatment trajectories to predict administered treatments for each time step, incorporating known treatment outcomes, target acuity scores, past treatment decisions, and current and past medical states. This analysis enables MeDT to capture complex dependencies among a patient's medical history, treatment decisions, outcomes, and short-term effects on stability. Our proposed conditioning uses acuity scores to address sparse reward issues and to facilitate clinician-model interactions, enhancing decision-making. Following training, MeDT can generate tailored treatment recommendations by conditioning on the desired positive outcome (survival) and user-specified short-term stability improvements. We carry out rigorous experiments on data from the MIMIC-III dataset and use off-policy evaluation to demonstrate that MeDT recommends interventions that outperform or are competitive with existing offline reinforcement learning methods while enabling a more interpretable, personalized and clinician-directed approach.
Reinforcement Learning for Sequence Design Leveraging Protein Language Models
Jithendaraa Subramanian
Shiva Kanth Sujit
Niloy Irtisam
Umong Sain
Riashat Islam
Handling Delay in Reinforcement Learning Caused by Parallel Computations of Neurons
Ivan Anokhin
Rishav
Stephen Chung
Biological neural networks operate in parallel, a feature that sets them apart from artificial neural networks and can significantly enhance… (voir plus) inference speed. However, this parallelism introduces challenges: when each neuron operates asynchronously with a fixed execution time, an
A Survey on Fairness Without Demographics
Patrik Joslin Kenfack
Éts Montréal
The issue of bias in Machine Learning (ML) models is a significant challenge for the machine learning community. Real-world biases can be em… (voir plus)bedded in the data used to train models, and prior studies have shown that ML models can learn and even amplify these biases. This can result in unfair treatment of individuals based on their inherent characteristics or sensitive attributes such as gender, race, or age. Ensuring fairness is crucial with the increasing use of ML models in high-stakes scenarios and has gained significant attention from researchers in recent years. However, the challenge of ensuring fairness becomes much greater when the assumption of full access to sensitive attributes does not hold. The settings where the hypothesis does not hold include cases where (1) only limited or noisy demographic information is available or (2) demographic information is entirely unobserved due to privacy restrictions. This survey reviews recent research efforts to enforce fairness when sensitive attributes are missing. We propose a taxonomy of existing works and, more importantly, highlight current challenges and future research directions to stimulate research in ML fairness in the setting of missing sensitive attributes.
On the Limits of Multi-modal Meta-Learning with Auxiliary Task Modulation Using Conditional Batch Normalization
Jordi Armengol-Estap'e
Vincent Michalski
Ramnath Kumar
Pierre-Luc St-Charles
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples. Recent studies show that cross… (voir plus)-modal learning can improve representations for few-shot classification. More specifically, language is a rich modality that can be used to guide visual learning. In this work, we experiment with a multi-modal architecture for few-shot learning that consists of three components: a classifier, an auxiliary network, and a bridge network. While the classifier performs the main classification task, the auxiliary network learns to predict language representations from the same input, and the bridge network transforms high-level features of the auxiliary network into modulation parameters for layers of the few-shot classifier using conditional batch normalization. The bridge should encourage a form of lightweight semantic alignment between language and vision which could be useful for the classifier. However, after evaluating the proposed approach on two popular few-shot classification benchmarks we find that a) the improvements do not reproduce across benchmarks, and b) when they do, the improvements are due to the additional compute and parameters introduced by the bridge network. We contribute insights and recommendations for future work in multi-modal meta-learning, especially when using language representations.
Neural semantic tagging for natural language-based search in building information models: Implications for practice
Mehrzad Shahinmoghadam
Ali Motamedi
Spectral Temporal Contrastive Learning
Sacha Morin
Somjit Nath
Learning useful data representations without requiring labels is a cornerstone of modern deep learning. Self-supervised learning methods, pa… (voir plus)rticularly contrastive learning (CL), have proven successful by leveraging data augmentations to define positive pairs. This success has prompted a number of theoretical studies to better understand CL and investigate theoretical bounds for downstream linear probing tasks. This work is concerned with the temporal contrastive learning (TCL) setting where the sequential structure of the data is used instead to define positive pairs, which is more commonly used in RL and robotics contexts. In this paper, we adapt recent work on Spectral CL to formulate Spectral Temporal Contrastive Learning (STCL). We discuss a population loss based on a state graph derived from a time-homogeneous reversible Markov chain with uniform stationary distribution. The STCL loss enables to connect the linear probing performance to the spectral properties of the graph, and can be estimated by considering previously observed data sequences as an ensemble of MCMC chains.
Bridging the Gap Between Offline and Online Reinforcement Learning Evaluation Methodologies
Shiva Kanth Sujit
Pedro Braga
Jorg Bornschein
Reinforcement learning (RL) has shown great promise with algorithms learning in environments with large state and action spaces purely from … (voir plus)scalar reward signals. A crucial challenge for current deep RL algorithms is that they require a tremendous amount of environment interactions for learning. This can be infeasible in situations where such interactions are expensive, such as in robotics. Offline RL algorithms try to address this issue by bootstrapping the learning process from existing logged data without needing to interact with the environment from the very beginning. While online RL algorithms are typically evaluated as a function of the number of environment interactions, there isn't a single established protocol for evaluating offline RL methods. In this paper, we propose a sequential approach to evaluate offline RL algorithms as a function of the training set size and thus by their data efficiency. Sequential evaluation provides valuable insights into the data efficiency of the learning process and the robustness of algorithms to distribution changes in the dataset while also harmonizing the visualization of the offline and online learning phases. Our approach is generally applicable and easy to implement. We compare several existing offline RL algorithms using this approach and present insights from a variety of tasks and offline datasets.
Empowering Clinicians with MeDT: A Framework for Sepsis Treatment
Aamer Abdul Rahman
Pranav Agarwal
Vincent Michalski
Rita Noumeir
RelationalUNet for Image Segmentation
Ivaxi Sheth
Pedro H. M. Braga
Shiva Kanth Sujit
Sahar Dastani
Prioritizing Samples in Reinforcement Learning with Reducible Loss
Shiva Kanth Sujit
Somjit Nath
Pedro Braga
Fairness Under Demographic Scarce Regime
Patrik Joslin Kenfack
Most existing works on fairness assume the model has full access to demographic information. However, there exist scenarios where demographi… (voir plus)c information is partially available because a record was not maintained throughout data collection or due to privacy reasons. This setting is known as demographic scarce regime. Prior research have shown that training an attribute classifier to replace the missing sensitive attributes (proxy) can still improve fairness. However, the use of proxy-sensitive attributes worsens fairness-accuracy trade-offs compared to true sensitive attributes. To address this limitation, we propose a framework to build attribute classifiers that achieve better fairness-accuracy trade-offs. Our method introduces uncertainty awareness in the attribute classifier and enforces fairness on samples with demographic information inferred with the lowest uncertainty. We show empirically that enforcing fairness constraints on samples with uncertain sensitive attributes is detrimental to fairness and accuracy. Our experiments on two datasets showed that the proposed framework yields models with significantly better fairness-accuracy trade-offs compared to classic attribute classifiers. Surprisingly, our framework outperforms models trained with constraints on the true sensitive attributes.