Portrait de Samira Ebrahimi Kahou

Samira Ebrahimi Kahou

Membre affilié
Chaire en IA Canada-CIFAR
Professeure adjointe, University of Calgary, Départment de génie électrique et logiciel
Professeure adjointe, École de technologie suprérieure, Département de génie logiciel et technologies de l'information
Professeure adjointe, McGill University, École d'informatique
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage multimodal
Apprentissage par renforcement
Apprentissage profond
Traitement du langage naturel
Vision par ordinateur

Biographie

Je suis professeure adjointe à l'Université de Calgary, à l'école d'ingénierie Schulich au département de génie électrique et logiciel. Je suis aussi professeure adjointe au département de génie logiciel et technologies de l'information de l'École de technologie supérieure (ÉTS) et professeure adjointe à l'école d'informatique de l’Université McGill. Avant de me joindre à l'ÉTS, j'ai été stagiaire postdoctorale auprès de la professeure Doina Precup à l’Université McGill / Mila – Institut québécois d’intelligence artificielle. Préalablement à mon postdoctorat, j'ai été chercheuse à Microsoft Research, à Montréal. J'ai obtenu mon doctorat à Polytechnique Montréal / Mila en 2016 sous la supervision du professeur Chris Pal. Pendant mes études doctorales, j'ai travaillé sur la vision par ordinateur et l'apprentissage profond appliqués à la reconnaissance des émotions, au suivi d'objets et à la distillation de connaissances.

Étudiants actuels

Maîtrise recherche - École de technologie suprérieure
Doctorat - École de technologie suprérieure
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - McGill
Co-superviseur⋅e :
Maîtrise professionnelle - UdeM
Maîtrise recherche - École de technologie suprérieure
Superviseur⋅e principal⋅e :
Maîtrise recherche - École de technologie suprérieure
Doctorat - École de technologie suprérieure
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Maîtrise recherche - École de technologie suprérieure
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :

Publications

Tell, Draw, and Repeat: Generating and Modifying Images Based on Continual Linguistic Instruction
Alaaeldin El-Nouby
Shikhar Sharma
Hannes Schulz
Layla El Asri
Graham W. Taylor
Conditional text-to-image generation is an active area of research, with many possible applications. Existing research has primarily focused… (voir plus) on generating a single image from available conditioning information in one step. One practical extension beyond one-step generation is a system that generates an image iteratively, conditioned on ongoing linguistic input or feedback. This is significantly more challenging than one-step generation tasks, as such a system must understand the contents of its generated images with respect to the feedback history, the current feedback, as well as the interactions among concepts present in the feedback history. In this work, we present a recurrent image generation model which takes into account both the generated output up to the current step as well as all past instructions for generation. We show that our model is able to generate the background, add new objects, and apply simple transformations to existing objects. We believe our approach is an important step toward interactive generation. Code and data is available at: https://www.microsoft.com/en-us/research/project/generative-neural-visual-artist-geneva/.
An Empirical Study of Batch Normalization and Group Normalization in Conditional Computation
Vincent Michalski
Vikram Voleti
Anthony Ortiz
Batch normalization has been widely used to improve optimization in deep neural networks. While the uncertainty in batch statistics can act … (voir plus)as a regularizer, using these dataset statistics specific to the training set impairs generalization in certain tasks. Recently, alternative methods for normalizing feature activations in neural networks have been proposed. Among them, group normalization has been shown to yield similar, in some domains even superior performance to batch normalization. All these methods utilize a learned affine transformation after the normalization operation to increase representational power. Methods used in conditional computation define the parameters of these transformations as learnable functions of conditioning information. In this work, we study whether and where the conditional formulation of group normalization can improve generalization compared to conditional batch normalization. We evaluate performances on the tasks of visual question answering, few-shot learning, and conditional image generation.
Towards Non-saturating Recurrent Units for Modelling Long-term Dependencies
Chinnadhurai Sankar
Eugene Vorontsov
Modelling long-term dependencies is a challenge for recurrent neural networks. This is primarily due to the fact that gradients vanish durin… (voir plus)g training, as the sequence length increases. Gradients can be attenuated by transition operators and are attenuated or dropped by activation functions. Canonical architectures like LSTM alleviate this issue by skipping information through a memory mechanism. We propose a new recurrent architecture (Non-saturating Recurrent Unit; NRU) that relies on a memory mechanism but forgoes both saturating activation functions and saturating gates, in order to further alleviate vanishing gradients. In a series of synthetic and real world tasks, we demonstrate that the proposed model is the only model that performs among the top 2 models across all tasks with and without long-term dependencies, when compared against a range of other architectures.
Deep Learning recognizes weather and climate patterns
Karthik Kashinath
M. Prabhat
Mayur Mudigonda
Ankur Mahesh
Sookyung Kim
Yunjie Liu
B. Toms
Evan Racah
Christopher Beckham
Jim Biard
K. Kunkel
Dean Nesbit Williams
Travis O'Brien
M. Wehner
W. Collins
Keep Drawing It: Iterative language-based image generation and editing
Alaaeldin El-Nouby
Shikhar Sharma
Hannes Schulz
Layla El Asri
Graham W. Taylor
Conditional text-to-image generation approaches commonly focus on generating a single image in a single step. One practical extension beyond… (voir plus) one-step generation is an interactive system that generates an image iteratively, conditioned on ongoing linguistic input / feedback. This is significantly more challenging as such a system must understand and keep track of the ongoing context and history. In this work, we present a recurrent image generation model which takes into account both the generated output up to the current step as well as all past instructions for generation. We show that our model is able to generate the background, add new objects, apply simple transformations to existing objects, and correct previous mistakes. We believe our approach is an important step toward interactive generation.
ChatPainter: Improving Text to Image Generation using Dialogue
Shikhar Sharma
Dendi Suhubdy
Vincent Michalski
Synthesizing realistic images from text descriptions on a dataset like Microsoft Common Objects in Context (MS COCO), where each image can c… (voir plus)ontain several objects, is a challenging task. Prior work has used text captions to generate images. However, captions might not be informative enough to capture the entire image and insufficient for the model to be able to understand which objects in the images correspond to which words in the captions. We show that adding a dialogue that further describes the scene leads to significant improvement in the inception score and in the quality of generated images on the MS COCO dataset.
FigureQA: An Annotated Figure Dataset for Visual Reasoning
Adam Atkinson
Vincent Michalski
Ákos Kádár
Adam Trischler
We introduce FigureQA, a visual reasoning corpus of over one million question-answer pairs grounded in over 100,000 images. The images are s… (voir plus)ynthetic, scientific-style figures from five classes: line plots, dot-line plots, vertical and horizontal bar graphs, and pie charts. We formulate our reasoning task by generating questions from 15 templates; questions concern various relationships between plot elements and examine characteristics like the maximum, the minimum, area-under-the-curve, smoothness, and intersection. To resolve, such questions often require reference to multiple plot elements and synthesis of information distributed spatially throughout a figure. To facilitate the training of machine learning systems, the corpus also includes side data that can be used to formulate auxiliary objectives. In particular, we provide the numerical data used to generate each figure as well as bounding-box annotations for all plot elements. We study the proposed visual reasoning task by training several models, including the recently proposed Relation Network as a strong baseline. Preliminary results indicate that the task poses a significant machine learning challenge. We envision FigureQA as a first step towards developing models that can intuitively recognize patterns from visual representations of data.
Towards Deep Conversational Recommendations
Raymond Li
Hannes Schulz
Vincent Michalski
There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendat… (voir plus)ion is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale data set consisting of real-world dialogues centered around recommendations. To address this issue and to facilitate our exploration here, we have collected ReDial, a data set consisting of over 10,000 conversations centered around the theme of providing movie recommendations. We make this data available to the community for further research. Second, we use this dataset to explore multiple facets of conversational recommendations. In particular we explore new neural architectures, mechanisms and methods suitable for composing conversational recommendation systems. Our dataset allows us to systematically probe model sub-components addressing different parts of the overall problem domain ranging from: sentiment analysis and cold-start recommendation generation to detailed aspects of how natural language is used in this setting in the real world. We combine such sub-components into a full-blown dialogue system and examine its behavior.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Guillaume Alain
Amjad Almahairi
Christof Angermüller
Nicolas Ballas
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
Arnaud Bergeron
J. Bergstra
Valentin Bisson
Josh Bleecher Snyder
Nicolas Bouchard
Nicolas Boulanger-Lewandowski
Xavier Bouthillier
Alexandre De Brébisson
Olivier Breuleux … (voir 92 de plus)
pierre luc carrier
Kyunghyun Cho
Jan Chorowski
Paul F. Christiano
Tim Cooijmans
Marc-Alexandre Côté
Myriam Côté
Yann Dauphin
Olivier Delalleau
Julien Demouth
Guillaume Desjardins
Sander Dieleman
Laurent Dinh
M'elanie Ducoffe
Vincent Dumoulin
Dumitru Erhan
Ziye Fan
Orhan Firat
Mathieu Germain
Xavier Glorot
Ian J. Goodfellow
Matthew Graham
Caglar Gulcehre
Philippe Hamel
Iban Harlouchet
Jean-philippe Heng
Balázs Hidasi
Sina Honari
Arjun Jain
S'ebastien Jean
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Alex Lamb
Pascal Lamblin
Eric P. Larsen
César Laurent
S. Lee
Simon-mark Lefrancois
Simon Lemieux
Nicholas Léonard
Zhouhan Lin
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
Pierre-Antoine Manzagol
Olivier Mastropietro
R. McGibbon
Roland Memisevic
Bart van Merriënboer
Vincent Michalski
Mehdi Mirza
Alberto Orlandi
Mohammad Pezeshki
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
François Savard
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Dmitriy Serdyuk
Samira Shabanian
Etienne Simon
Sigurd Spieckermann
S. Subramanyam
Jakub Sygnowski
Jérémie Tanguay
Gijs van Tulder
Joseph P. Turian
Sebastian Urban
Francesco Visin
Harm de Vries
David Warde-Farley
Dustin J. Webb
M. Willson
Kelvin Xu
Lijun Xue
Li Yao
Saizheng Zhang
Ying Zhang
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Guillaume Alain
Amjad Almahairi
Christof Angermüller
Nicolas Ballas
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
Arnaud Bergeron
James Bergstra
Valentin Bisson
Josh Bleecher Snyder
Nicolas Bouchard
Nicolas Boulanger-Lewandowski
Xavier Bouthillier
Alexandre De Brébisson
Olivier Breuleux … (voir 92 de plus)
pierre luc carrier
Kyunghyun Cho
Jan Chorowski
Paul F. Christiano
Tim Cooijmans
Marc-Alexandre Côté
Myriam Côté
Yann Dauphin
Olivier Delalleau
Julien Demouth
Guillaume Desjardins
Sander Dieleman
Laurent Dinh
M'elanie Ducoffe
Vincent Dumoulin
Dumitru Erhan
Ziye Fan
Orhan Firat
Mathieu Germain
Xavier Glorot
Ian G Goodfellow
Matthew Graham
Caglar Gulcehre
Philippe Hamel
Iban Harlouchet
Jean-philippe Heng
Balázs Hidasi
Sina Honari
Arjun Jain
Sébastien Jean
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Alex Lamb
Pascal Lamblin
Eric Larsen
César Laurent
S. Lee
Simon-mark Lefrancois
Simon Lemieux
Nicholas Léonard
Zhouhan Lin
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
Pierre-Antoine Manzagol
Olivier Mastropietro
R. McGibbon
Roland Memisevic
Bart van Merriënboer
Vincent Michalski
Mehdi Mirza
Alberto Orlandi
Mohammad Pezeshki
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
François Savard
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Dmitriy Serdyuk
Samira Shabanian
Etienne Simon
Sigurd Spieckermann
S. Subramanyam
Jakub Sygnowski
Jérémie Tanguay
Gijs van Tulder
Joseph Turian
Sebastian Urban
Francesco Visin
Harm de Vries
David Warde-Farley
Dustin J. Webb
M. Willson
Kelvin Xu
Lijun Xue
Li Yao
Saizheng Zhang
Ying Zhang
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.