This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Moslem Yazdanpanah
Alumni
Publications
TRUST: Test-Time Refinement using Uncertainty-Guided SSM Traverses
State Space Models (SSMs) have emerged as efficient alternatives to Vision Transformers (ViTs), with VMamba standing out as a pioneering arc… (see more)hitecture designed for vision tasks. However, their generalization performance degrades significantly under distribution shifts. To address this limitation, we propose TRUST (Test-Time Refinement using Uncertainty-Guided SSM Traverses), a novel test-time adaptation (TTA) method that leverages diverse traversal permutations to generate multiple causal perspectives of the input image. Model predictions serve as pseudo-labels to guide updates of the Mamba-specific parameters, and the adapted weights are averaged to integrate the learned information across traversal scans. Altogether, TRUST is the first approach that explicitly leverages the unique architectural properties of SSMs for adaptation. Experiments on seven benchmarks show that TRUST consistently improves robustness and outperforms existing TTA methods.
Batch normalization is a staple of computer vision models, including those employed in few-shot learning. Batch nor-malization layers in con… (see more)volutional neural networks are composed of a normalization step, followed by a shift and scale of these normalized features applied via the per-channel trainable affine parameters
2022-06-18
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (published)