Portrait of Tristan Deleu

Tristan Deleu

Collaborating Alumni - Université de Montréal
Supervisor
Research Topics
Causality
Deep Learning
Probabilistic Models
Reinforcement Learning

Publications

Relative Trajectory Balance is equivalent to Trust-PCL
Recent progress in generative modeling has highlighted the importance of Reinforcement Learning (RL) for fine-tuning, with KL-regularized me… (see more)thods in particular proving to be highly effective for both autoregressive and diffusion models. Complementing this line of work, the Relative Trajectory Balance (RTB) objective was recently introduced in the context of Generative Flow Networks (GFlowNets) to serve the same role of improving fine-tuning in sequential generative models. Building on prior work linking GFlowNets and maximum-entropy RL, we establish in this paper an equivalence between RTB and Trust-PCL, an off-policy RL method with KL regularization. This equivalence situates RTB within the broader theoretical landscape of KL-regularized RL, and clarifies its relationship to earlier methods. Leveraging this insight, we revisit an illustrative example from the RTB paper and show that KL-regularized RL methods achieve comparable performance, offering an alternative perspective to what was previously reported.
Relative Trajectory Balance is equivalent to Trust-PCL
Relative Trajectory Balance is equivalent to Trust-PCL
Recent progress in generative modeling has highlighted the importance of Reinforcement Learning (RL) for fine-tuning, with KL-regularized me… (see more)thods in particular proving to be highly effective for both autoregressive and diffusion models. Complementing this line of work, the Relative Trajectory Balance (RTB) objective was recently introduced in the context of Generative Flow Networks (GFlowNets) to serve the same role of improving fine-tuning in sequential generative models. Building on prior work linking GFlowNets and maximum-entropy RL, we establish in this paper an equivalence between RTB and Trust-PCL, an off-policy RL method with KL regularization. This equivalence situates RTB within the broader theoretical landscape of KL-regularized RL, and clarifies its relationship to earlier methods. Leveraging this insight, we revisit an illustrative example from the RTB paper and show that KL-regularized RL methods achieve comparable performance, offering an alternative perspective to what was previously reported.
A Data-driven Discovery of the Causal Connection between Galaxy and Black Hole Evolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Yu Luo
Changhyun Cho
Xi 熙 Kang 康
Andrea Maccio
Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Yu Luo
Changhyun Cho
Xi Kang
Andrea Maccio
Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure… (see more) (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)--galaxy interaction has long been constrained by observed scaling relations, that is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date dataset, reveals a causal link between galaxy properties and dynamically-measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.
Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Yu Luo
Changhyun Cho
Xi 熙 Kang 康
Andrea Maccio
Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure… (see more) (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)–galaxy interaction has long been constrained by observed scaling relations, which is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date data set, reveals a causal link between galaxy properties and dynamically measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while, in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas, in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.
Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Yu Luo
Changhyun Cho
Xi 熙 Kang 康
Andrea Maccio
Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure… (see more) (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)–galaxy interaction has long been constrained by observed scaling relations, which is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date data set, reveals a causal link between galaxy properties and dynamically measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while, in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas, in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.
Discrete Probabilistic Inference as Control in Multi-path Environments
We consider the problem of sampling from a discrete and structured distribution as a sequential decision problem, where the objective is to … (see more)find a stochastic policy such that objects are sampled at the end of this sequential process proportionally to some predefined reward. While we could use maximum entropy Reinforcement Learning (MaxEnt RL) to solve this problem for some distributions, it has been shown that in general, the distribution over states induced by the optimal policy may be biased in cases where there are multiple ways to generate the same object. To address this issue, Generative Flow Networks (GFlowNets) learn a stochastic policy that samples objects proportionally to their reward by approximately enforcing a conservation of flows across the whole Markov Decision Process (MDP). In this paper, we extend recent methods correcting the reward in order to guarantee that the marginal distribution induced by the optimal MaxEnt RL policy is proportional to the original reward, regardless of the structure of the underlying MDP. We also prove that some flow-matching objectives found in the GFlowNet literature are in fact equivalent to well-established MaxEnt RL algorithms with a corrected reward. Finally, we study empirically the performance of multiple MaxEnt RL and GFlowNet algorithms on multiple problems involving sampling from discrete distributions.
Discrete Probabilistic Inference as Control in Multi-path Environments
We consider the problem of sampling from a discrete and structured distribution as a sequential decision problem, where the objective is to … (see more)find a stochastic policy such that objects are sampled at the end of this sequential process proportionally to some predefined reward. While we could use maximum entropy Reinforcement Learning (MaxEnt RL) to solve this problem for some distributions, it has been shown that in general, the distribution over states induced by the optimal policy may be biased in cases where there are multiple ways to generate the same object. To address this issue, Generative Flow Networks (GFlowNets) learn a stochastic policy that samples objects proportionally to their reward by approximately enforcing a conservation of flows across the whole Markov Decision Process (MDP). In this paper, we extend recent methods correcting the reward in order to guarantee that the marginal distribution induced by the optimal MaxEnt RL policy is proportional to the original reward, regardless of the structure of the underlying MDP. We also prove that some flow-matching objectives found in the GFlowNet literature are in fact equivalent to well-established MaxEnt RL algorithms with a corrected reward. Finally, we study empirically the performance of multiple MaxEnt RL and GFlowNet algorithms on multiple problems involving sampling from discrete distributions.
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network
Generative Flow Networks (GFlowNets), a class of generative models over discrete and structured sample spaces, have been previously applied … (see more)to the problem of inferring the marginal posterior distribution over the directed acyclic graph (DAG) of a Bayesian Network, given a dataset of observations. Based on recent advances extending this framework to non-discrete sample spaces, we propose in this paper to approximate the joint posterior over not only the structure of a Bayesian Network, but also the parameters of its conditional probability distributions. We use a single GFlowNet whose sampling policy follows a two-phase process: the DAG is first generated sequentially one edge at a time, and then the corresponding parameters are picked once the full structure is known. Since the parameters are included in the posterior distribution, this leaves more flexibility for the local probability models of the Bayesian Network, making our approach applicable even to non-linear models parametrized by neural networks. We show that our method, called JSP-GFN, offers an accurate approximation of the joint posterior, while comparing favorably against existing methods on both simulated and real data.
Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation
The practical utility of causality in decision-making is widespread and brought about by the intertwining of causal discovery and causal inf… (see more)erence. Nevertheless, a notable gap exists in the evaluation of causal discovery methods, where insufficient emphasis is placed on downstream inference. To address this gap, we evaluate seven established baseline causal discovery methods including a newly proposed method based on GFlowNets, on the downstream task of treatment effect estimation. Through the implementation of a distribution-level evaluation, we offer valuable and unique insights into the efficacy of these causal discovery methods for treatment effect estimation, considering both synthetic and real-world scenarios, as well as low-data scenarios. The results of our study demonstrate that some of the algorithms studied are able to effectively capture a wide range of useful and diverse ATE modes, while some tend to learn many low-probability modes which impacts the (unrelaxed) recall and precision.
Generative Flow Networks: a Markov Chain Perspective