Portrait of Yashar Hezaveh

Yashar Hezaveh

Associate Academic Member
Assistant Professor, Université de Montréal, Department of Physics
Research Topics
Computer Vision
Deep Learning
Representation Learning

Biography

Yashar Hezaveh is an associate academic member of Mila – Quebec Artificial Intelligence Institute and director of the Montréal Institute for Astrophysical Data Analysis and Machine Learning (Ciela). He is an assistant professor in the Department of Physics at Université de Montréal and the Canada Research Chair in Astrophysical Data Analysis and Machine Learning. In addition, Hezaveh is an associate member of McGill University’s Trottier Space Institute, and a visiting fellow at the Center for Computational Astrophysics at Flatiron Institute in New York and at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario. He was previously a research fellow at the Flatiron Institute (2018–2019) and a NASA Hubble Fellow at Stanford University (2013–2018).

Hezaveh is a world leader in the analysis of astrophysical data using deep learning. His current research focuses primarily on Bayesian inference in AI, the goal being to learn about the distribution of dark matter in strongly lensed galaxies using data from large cosmological surveys. His research is supported by the Schmidt Futures Foundation and the Simons Foundation.

Current Students

Research Intern - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Master's Research - McGill University
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Master's Research - McGill University
Postdoctorate - McGill University
Principal supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :

Publications

Caustics: A Python Package for Accelerated Strong Gravitational Lensing Simulations
Connor Stone
Alexandre Adam
Adam Coogan
M. J. Yantovski-Barth
Andreas Filipp
Landung Setiawan
Cordero Core
Ronan Legin
Charles Wilson
Gabriel Missael Barco
Robustness of Neural Ratio and Posterior Estimators to Distributional Shifts for Population-Level Dark Matter Analysis in Strong Gravitational Lensing
Beyond Causal Discovery for Astronomy: Learning Meaningful Representations with Independent Component Analysis
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Andrea Maccio
Gravitational-Wave Parameter Estimation in non-Gaussian noise using Score-Based Likelihood Characterization
Ronan Legin
Maximiliano Isi
Kaze W. K. Wong
Beyond Causal Discovery for Astronomy: Learning Meaningful Representations with Independent Component Analysis
Zehao Jin
Mario Pasquato
Benjamin L. Davis
A. Macciò
A Data-driven Discovery of the Causal Connection between Galaxy and Black Hole Evolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Tristan Deleu
Yu Luo
Changhyun Cho
Pablo Lemos
Xi Kang
Andrea Maccio
Strong gravitational lensing as a probe of dark matter
Simona Vegetti
Simon Birrer
Giulia Despali
C. Fassnacht
Daniel A. Gilman
L.
J. McKean
D. Powell
Conor M. O'riordan
G.
Vernardos
Dark matter structures within strong gravitational lens galaxies and along their line of sight leave a gravitational imprint on the multiple… (see more) images of lensed sources. Strong gravitational lensing provides, therefore, a key test of different dark matter models in a way that is independent of the baryonic content of matter structures on subgalactic scales. In this chapter, we describe how galaxy-scale strong gravitational lensing observations are sensitive to the physical nature of dark matter. We provide a historical perspective of the field, and review its current status. We discuss the challenges and advances in terms of data, treatment of systematic errors and theoretical predictions, that will enable one to deliver a stringent and robust test of different dark matter models in the near future. With the advent of the next generation of sky surveys, the number of known strong gravitational lens systems is expected to increase by several orders of magnitude. Coupled with high-resolution follow-up observations, these data will provide a key opportunity to constrain the properties of dark matter with strong gravitational lensing.
Tackling the Problem of Distributional Shifts: Correcting Misspecified, High-Dimensional Data-Driven Priors for Inverse Problems
Gabriel Missael Barco
Alexandre Adam
Connor Stone
Bayesian inference for inverse problems hinges critically on the choice of priors. In the absence of specific prior information, population-… (see more)level distributions can serve as effective priors for parameters of interest. With the advent of machine learning, the use of data-driven population-level distributions (encoded, e.g., in a trained deep neural network) as priors is emerging as an appealing alternative to simple parametric priors in a variety of inverse problems. However, in many astrophysical applications, it is often difficult or even impossible to acquire independent and identically distributed samples from the underlying data-generating process of interest to train these models. In these cases, corrupted data or a surrogate, e.g. a simulator, is often used to produce training samples, meaning that there is a risk of obtaining misspecified priors. This, in turn, can bias the inferred posteriors in ways that are difficult to quantify, which limits the potential applicability of these models in real-world scenarios. In this work, we propose addressing this issue by iteratively updating the population-level distributions by retraining the model with posterior samples from different sets of observations and showcase the potential of this method on the problem of background image reconstruction in strong gravitational lensing when score-based models are used as data-driven priors. We show that starting from a misspecified prior distribution, the updated distribution becomes progressively closer to the underlying population-level distribution, and the resulting posterior samples exhibit reduced bias after several updates.
Improving Gradient-Guided Nested Sampling for Posterior Inference
Pablo Lemos
Nikolay Malkin
Will Handley
We present a performant, general-purpose gradient-guided nested sampling (GGNS) algorithm, combining the state of the art in differentiable … (see more)programming, Hamiltonian slice sampling, clustering, mode separation, dynamic nested sampling, and parallelization. This unique combination allows GGNS to scale well with dimensionality and perform competitively on a variety of synthetic and real-world problems. We also show the potential of combining nested sampling with generative flow networks to obtain large amounts of high-quality samples from the posterior distribution. This combination leads to faster mode discovery and more accurate estimates of the partition function.
Neural Ratio Estimators Meet Distributional Shift and Mode Misspecification: A Cautionary Tale from Strong Gravitational Lensing
In recent years, there has been increasing interest in the field of astrophysics in applying Neural Ratio Estimators (NREs) to large-scale i… (see more)nference problems where both amortization and marginalization over a large number of nuisance parameters are needed. Here, in order to assess the true potential of this method to produce unbiased inference on real data, we investigate the robustness of NREs to distribution shifts and model misspecification in the specific scientific application of the measurement of dark matter population-level parameters using strong gravitational lensing. We investigate the behaviour of a trained NRE for test data presenting distributional shifts inside the bounds of training, as well as out of distribution, both in the linear and non-linear parameters of this problem. While our results show that NREs perform when tested perfectly in distribution, we find that they exhibit significant biases and drawbacks when confronted with slight deviations from the examples seen in the training distribution. This indicates the necessity for caution when applying NREs to real astrophysical data, where underlying distributions are not perfectly known and models do not perfectly reconstruct the true underlying distributions.
Inpainting Galaxy Counts onto N-Body Simulations over Multiple Cosmologies and Astrophysics
Antoine Bourdin
Ronan Legin
Matthew Ho
Alexandre Adam
Variable Star Light Curves in Koopman Space
Nicolas Mekhaël
Mario Pasquato
Gaia Carenini
Vittorio F. Braga
Piero Trevisan
Giuseppe Bono