A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
In recent years, there has been increasing interest in the field of astrophysics in applying Neural Ratio Estimators (NREs) to large-scale i… (see more)nference problems where both amortization and marginalization over a large number of nuisance parameters are needed.
Here, in order to assess the true potential of this method to produce unbiased inference on real data, we investigate the robustness of NREs to distribution shifts and model misspecification in the specific scientific application of the measurement of dark matter population-level parameters using strong gravitational lensing. We investigate the behaviour of a trained NRE for test data presenting distributional shifts inside the bounds of training, as well as out of distribution, both in the linear and non-linear parameters of this problem. While our results show that NREs perform when tested perfectly in distribution, we find that they exhibit significant biases and drawbacks when confronted with slight deviations from the examples seen in the training distribution. This indicates the necessity for caution when applying NREs to real astrophysical data, where underlying distributions are not perfectly known and models do not perfectly reconstruct the true underlying distributions.
In recent years, there has been increasing interest in the field of astrophysics in applying Neural Ratio Estimators (NREs) to large-scale i… (see more)nference problems where both amortization and marginalization over a large number of nuisance parameters are needed.
Here, in order to assess the true potential of this method to produce unbiased inference on real data, we investigate the robustness of NREs to distribution shifts and model misspecification in the specific scientific application of the measurement of dark matter population-level parameters using strong gravitational lensing. We investigate the behaviour of a trained NRE for test data presenting distributional shifts inside the bounds of training, as well as out of distribution, both in the linear and non-linear parameters of this problem. While our results show that NREs perform when tested perfectly in distribution, we find that they exhibit significant biases and drawbacks when confronted with slight deviations from the examples seen in the training distribution. This indicates the necessity for caution when applying NREs to real astrophysical data, where underlying distributions are not perfectly known and models do not perfectly reconstruct the true underlying distributions.