Portrait de Samira Ebrahimi Kahou

Samira Ebrahimi Kahou

Membre affilié
Professeure agrégée, University of Calgary, Départment de génie électrique et logiciel
Professeure associée, École de technologie suprérieure, Département de génie logiciel et technologies de l'information
Professeure associée, McGill University, École d'informatique
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage multimodal
Apprentissage par renforcement
Apprentissage profond
Traitement du langage naturel
Vision par ordinateur

Biographie

Samira est professeure agrégée à l’Université de Calgary, à la Schulich School of Engineering. Elle est également professeure associée à l’École de technologie supérieure (ÉTS), au Département de génie logiciel et des technologies de l’information, ainsi qu’à l’Université McGill, à l’École d’informatique. Elle est membre académique de Mila - Institut québécois d’intelligence artificielle et détient une Chaire canadienne CIFAR en IA. Samira a obtenu son doctorat en génie informatique à Polytechnique Montréal/Mila, avec un prix pour la meilleure thèse du département. Elle a également travaillé comme chercheuse postdoctorale à l’École d’informatique de l’Université McGill et comme chercheuse à Microsoft Research Montréal.

Samira et son groupe de recherche travaillent à résoudre des problèmes fondamentaux de l’apprentissage de représentations pour la prise de décision, avec un accent particulier sur l’explicabilité, la généralisation et l’apprentissage efficace. Ses travaux ont été publiés dans des conférences et revues de premier plan telles que NeurIPS, ICLR, ICML, ICCV, CVPR, TMLR et CoRL. Samira a reçu en 2024 le prix d’excellence en recherche en début de carrière de la Schulich School of Engineering. Ses contributions marquantes en apprentissage multimodal ont été reconnues à deux reprises par les prix ACM ICMI Ten-Year Technical Impact Awards : finaliste en 2023 et lauréate en 2025.

Étudiants actuels

Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - École de technologie suprérieure
Superviseur⋅e principal⋅e :
Doctorat - École de technologie suprérieure
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Maîtrise recherche - École de technologie suprérieure
Doctorat - McGill
Superviseur⋅e principal⋅e :

Publications

Towards Deep Conversational Recommendations
There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendat… (voir plus)ion is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale data set consisting of real-world dialogues centered around recommendations. To address this issue and to facilitate our exploration here, we have collected ReDial, a data set consisting of over 10,000 conversations centered around the theme of providing movie recommendations. We make this data available to the community for further research. Second, we use this dataset to explore multiple facets of conversational recommendations. In particular we explore new neural architectures, mechanisms and methods suitable for composing conversational recommendation systems. Our dataset allows us to systematically probe model sub-components addressing different parts of the overall problem domain ranging from: sentiment analysis and cold-start recommendation generation to detailed aspects of how natural language is used in this setting in the real world. We combine such sub-components into a full-blown dialogue system and examine its behavior.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Amjad Almahairi
Christof Angermüller
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
J. Bergstra
Josh Bleecher Snyder
Paul F. Christiano
Myriam Côté
Julien Demouth
Sander Dieleman
M'elanie Ducoffe
Ziye Fan
Mathieu Germain
Ian J. Goodfellow
Matthew Graham
Balázs Hidasi
Arjun Jain
S'ebastien Jean
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Pascal Lamblin
Eric P. Larsen
S. Lee
Simon-mark Lefrancois
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
R. McGibbon
Mehdi Mirza
Alberto Orlandi
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Samira Shabanian
Sigurd Spieckermann
S. Subramanyam
Gijs van Tulder
Joseph P. Turian
Sebastian Urban
Dustin J. Webb
M. Willson
Lijun Xue
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Amjad Almahairi
Christof Angermüller
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
Josh Bleecher Snyder
Paul F. Christiano
Myriam Côté
Julien Demouth
Sander Dieleman
M'elanie Ducoffe
Ziye Fan
Mathieu Germain
Ian G Goodfellow
Matthew Graham
Balázs Hidasi
Arjun Jain
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Pascal Lamblin
Eric Larsen
S. Lee
Simon-mark Lefrancois
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
R. McGibbon
Mehdi Mirza
Alberto Orlandi
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Samira Shabanian
Sigurd Spieckermann
S. Subramanyam
Gijs van Tulder
Sebastian Urban
Dustin J. Webb
M. Willson
Lijun Xue
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.