Portrait of Olivier Mastropietro is unavailable

Olivier Mastropietro

Alumni

Publications

Hierarchical Adversarially Learned Inference
We propose a novel hierarchical generative model with a simple Markovian structure and a corresponding inference model. Both the generative … (see more)and inference model are trained using the adversarial learning paradigm. We demonstrate that the hierarchical structure supports the learning of progressively more abstract representations as well as providing semantically meaningful reconstructions with different levels of fidelity. Furthermore, we show that minimizing the Jensen-Shanon divergence between the generative and inference network is enough to minimize the reconstruction error. The resulting semantically meaningful hierarchical latent structure discovery is exemplified on the CelebA dataset. There, we show that the features learned by our model in an unsupervised way outperform the best handcrafted features. Furthermore, the extracted features remain competitive when compared to several recent deep supervised approaches on an attribute prediction task on CelebA. Finally, we leverage the model's inference network to achieve state-of-the-art performance on a semi-supervised variant of the MNIST digit classification task.
Adversarially Learned Inference
We introduce the adversarially learned inference (ALI) model, which jointly learns a generation network and an inference network using an ad… (see more)versarial process. The generation network maps samples from stochastic latent variables to the data space while the inference network maps training examples in data space to the space of latent variables. An adversarial game is cast between these two networks and a discriminative network is trained to distinguish between joint latent/data-space samples from the generative network and joint samples from the inference network. We illustrate the ability of the model to learn mutually coherent inference and generation networks through the inspections of model samples and reconstructions and confirm the usefulness of the learned representations by obtaining a performance competitive with state-of-the-art on the semi-supervised SVHN and CIFAR10 tasks.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Amjad Almahairi
Christof Angermüller
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
J. Bergstra
Josh Bleecher Snyder
Paul F. Christiano
Marc-Alexandre Côté
Myriam Côté
Julien Demouth
Sander Dieleman
M'elanie Ducoffe
Ziye Fan
Mathieu Germain
Ian J. Goodfellow
Matthew Graham
Balázs Hidasi
Arjun Jain
S'ebastien Jean
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Pascal Lamblin
Eric P. Larsen
S. Lee
Simon-mark Lefrancois
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
R. McGibbon
Mehdi Mirza
Alberto Orlandi
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Samira Shabanian
Sigurd Spieckermann
S. Subramanyam
Gijs van Tulder
Joseph P. Turian
Sebastian Urban
Dustin J. Webb
M. Willson
Lijun Xue
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (see more)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Amjad Almahairi
Christof Angermüller
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
Josh Bleecher Snyder
Paul F. Christiano
Marc-Alexandre Côté
Myriam Côté
Julien Demouth
Sander Dieleman
M'elanie Ducoffe
Ziye Fan
Mathieu Germain
Ian G Goodfellow
Matthew Graham
Balázs Hidasi
Arjun Jain
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Pascal Lamblin
Eric Larsen
S. Lee
Simon-mark Lefrancois
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
R. McGibbon
Mehdi Mirza
Alberto Orlandi
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Samira Shabanian
Sigurd Spieckermann
S. Subramanyam
Gijs van Tulder
Sebastian Urban
Dustin J. Webb
M. Willson
Lijun Xue
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (see more)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.