Portrait of Harm de Vries is unavailable

Harm de Vries

Alumni

Publications

StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder: may the source be with you!
Loubna Ben allal
Yangtian Zi
Niklas Muennighoff
Denis Kocetkov
Chenghao Mou
Marc Marone
Christopher Akiki
Jia LI
Jenny Chim
Qian Liu
Evgenii Zheltonozhskii
Terry Yue Zhuo
Thomas Wang
Olivier Dehaene
Mishig Davaadorj
Joel Lamy-Poirier
Joao Monteiro
Oleh Shliazhko
Nicolas Gontier … (see 49 more)
Armel Zebaze
Ming-Ho Yee
Logesh Kumar Umapathi
Jian Zhu
Ben Lipkin
Muhtasham Oblokulov
Zhiruo Wang
Rudra Murthy
Jason T Stillerman
Siva Sankalp Patel
Dmitry Abulkhanov
Marco Zocca
Zhihan Zhang
N. Fahmy
Urvashi Bhattacharyya
Wenhao Yu
Swayam Singh
Paulo Villegas
M. Kunakov
Jan Ebert
Fedor Zhdanov
Manuel Romero
Tony Lee
Nadav Timor
Jennifer Ding
Claire S Schlesinger
Hailey Schoelkopf
Jana Ebert
Tri Dao
Mayank Mishra
Alex Gu
Jennifer Robinson
Sean Hughes
Carolyn Jane Anderson
Brendan Dolan-Gavitt
Danish Contractor
Daniel Fried
Yacine Jernite
Carlos Muñoz Ferrandis
Sean M. Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode community, an open-scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs)… (see more), introduces StarCoder and StarCoderBase: 15.5B parameter models with 8K context length, infilling capabilities and fast large-batch inference enabled by multi-query attention. StarCoderBase is trained on 1 trillion tokens sourced from The Stack, a large collection of permissively licensed GitHub repositories with inspection tools and an opt-out process. We fine-tuned StarCoderBase on 35B Python tokens, resulting in the creation of StarCoder. We perform the most comprehensive evaluation of Code LLMs to date and show that StarCoderBase outperforms every open Code LLM that supports multiple programming languages and matches or outperforms the OpenAI code-cushman-001 model. Furthermore, StarCoder outperforms every model that is fine-tuned on Python and still retains its performance on other programming languages. We take several important steps towards a safe open-access model release, including an improved PII redaction pipeline and a novel attribution tracing tool, and make the StarCoder models publicly available under a more commercially viable version of the Open Responsible AI Model license.
RepoFusion: Training Code Models to Understand Your Repository
Disha Shrivastava
Denis Kocetkov
Torsten Scholak
Despite the huge success of Large Language Models (LLMs) in coding assistants like GitHub Copilot, these models struggle to understand the c… (see more)ontext present in the repository (e.g., imports, parent classes, files with similar names, etc.), thereby producing inaccurate code completions. This effect is more pronounced when using these assistants for repositories that the model has not seen during training, such as proprietary software or work-in-progress code projects. Recent work has shown the promise of using context from the repository during inference. In this work, we extend this idea and propose RepoFusion, a framework to train models to incorporate relevant repository context. Experiments on single-line code completion show that our models trained with repository context significantly outperform much larger code models as CodeGen-16B-multi (
The Stack: 3 TB of permissively licensed source code
Denis Kocetkov
Loubna Ben allal
Jia LI
Chenghao Mou
Carlos Muñoz Ferrandis
Yacine Jernite
Margaret Mitchell
Sean Hughes
Thomas Wolf
Leandro Von Werra
Large Language Models (LLMs) play an ever-increasing role in the field of Artificial Intelligence (AI)--not only for natural language proces… (see more)sing but also for code understanding and generation. To stimulate open and responsible research on LLMs for code, we introduce The Stack, a 3.1 TB dataset consisting of permissively licensed source code in 30 programming languages. We describe how we collect the full dataset, construct a permissively licensed subset, present a data governance plan, discuss limitations, and show promising results on text2code benchmarks by training 350M-parameter decoders on different Python subsets. We find that (1) near-deduplicating the data significantly boosts performance across all experiments, and (2) it is possible to match previously reported HumanEval and MBPP performance using only permissively licensed data. We make the dataset available at https://hf.co/BigCode, provide a tool called"Am I in The Stack"(https://hf.co/spaces/bigcode/in-the-stack) for developers to search The Stack for copies of their code, and provide a process for code to be removed from the dataset by following the instructions at https://www.bigcode-project.org/docs/about/the-stack/.