Portrait of Harm de Vries is unavailable

Harm de Vries

Alumni

Publications

SantaCoder: don't reach for the stars!
Loubna Ben allal
Denis Kocetkov
Chenghao Mou
Christopher Akiki
Carlos Muñoz Ferrandis
Niklas Muennighoff
Mayank Mishra
Alex Gu
Logesh Kumar Umapathi
Carolyn Jane Anderson
Yangtian Zi
Joel Lamy Poirier
Hailey Schoelkopf
S. Troshin
Dmitry Abulkhanov
Manuel L. Romero
M. Lappert
Francesco De Toni … (see 21 more)
Bernardo Garc'ia del R'io
Qian Liu
Shamik Bose
Urvashi Bhattacharyya
Terry Yue Zhuo
Ian Yu
Paulo Villegas
Marco Zocca
Sourab Mangrulkar
D. Lansky
Huu Nguyen
Danish Contractor
Luisa Villa
Jia LI
Yacine Jernite
Sean Christopher Hughes
Daniel Fried
Arjun Guha
Leandro Von Werra
The BigCode project is an open-scientific collaboration working on the responsible development of large language models for code. This tech … (see more)report describes the progress of the collaboration until December 2022, outlining the current state of the Personally Identifiable Information (PII) redaction pipeline, the experiments conducted to de-risk the model architecture, and the experiments investigating better preprocessing methods for the training data. We train 1.1B parameter models on the Java, JavaScript, and Python subsets of The Stack and evaluate them on the MultiPL-E text-to-code benchmark. We find that more aggressive filtering of near-duplicates can further boost performance and, surprisingly, that selecting files from repositories with 5+ GitHub stars deteriorates performance significantly. Our best model outperforms previous open-source multilingual code generation models (InCoder-6.7B and CodeGen-Multi-2.7B) in both left-to-right generation and infilling on the Java, JavaScript, and Python portions of MultiPL-E, despite being a substantially smaller model. All models are released under an OpenRAIL license at https://hf.co/bigcode.
The StatCan Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents
The Power of Prompt Tuning for Low-Resource Semantic Parsing
Prompt tuning has recently emerged as an effective method for adapting pre-trained language models to a number of language understanding and… (see more) generation tasks. In this paper, we investigate prompt tuning for semantic parsing—the task of mapping natural language utterances onto formal meaning representations. On the low-resource splits of Overnight and TOPv2, we find that a prompt tuned T5-xl significantly outperforms its fine-tuned counterpart, as well as strong GPT-3 and BART baselines. We also conduct ablation studies across different model scales and target representations, finding that, with increasing model scale, prompt tuned T5 models improve at generating target representations that are far from the pre-training distribution.
TopiOCQA: Open-domain Conversational Question Answering with Topic Switching
Shehzaad Dhuliawala
Kaheer Suleman
The Power of Prompt Tuning for Low-Resource Semantic Parsing
Prompt tuning has recently emerged as an effective method for adapting pre-trained language models to a number of language understanding and… (see more) generation tasks. In this paper, we investigate prompt tuning for semantic parsing—the task of mapping natural language utterances onto formal meaning representations. On the low-resource splits of Overnight and TOPv2, we find that a prompt tuned T5-xl significantly outperforms its fine-tuned counterpart, as well as strong GPT-3 and BART baselines. We also conduct ablation studies across different model scales and target representations, finding that, with increasing model scale, prompt tuned T5 models improve at generating target representations that are far from the pre-training distribution.
Generative Compositional Augmentations for Scene Graph Prediction
Cătălina Cangea
Graham W. Taylor
Inferring objects and their relationships from an image in the form of a scene graph is useful in many applications at the intersection of v… (see more)ision and language. We consider a challenging problem of compositional generalization that emerges in this task due to a long tail data distribution. Current scene graph generation models are trained on a tiny fraction of the distribution corresponding to the most frequent compositions, e.g. . However, test images might contain zero- and few-shot compositions of objects and relationships, e.g. . Despite each of the object categories and the predicate (e.g. ‘on’) being frequent in the training data, the models often fail to properly understand such unseen or rare compositions. To improve generalization, it is natural to attempt increasing the diversity of the training distribution. However, in the graph domain this is non-trivial. To that end, we propose a method to synthesize rare yet plausible scene graphs by perturbing real ones. We then propose and empirically study a model based on conditional generative adversarial networks (GANs) that allows us to generate visual features of perturbed scene graphs and learn from them in a joint fashion. When evaluated on the Visual Genome dataset, our approach yields marginal, but consistent improvements in zero- and few-shot metrics. We analyze the limitations of our approach indicating promising directions for future research.
Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation
Cătălina Cangea
Graham W. Taylor
CLOSURE: Assessing Systematic Generalization of CLEVR Models
Systematic Generalization: What Is Required and Can It Be Learned?
Visual Reasoning with Multi-hop Feature Modulation
Mathieu Seurin
Jérémie Mary
P. Preux
Olivier Pietquin
Feature-wise transformations
FiLM: Visual Reasoning with a General Conditioning Layer
We introduce a general-purpose conditioning method for neural networks called FiLM: Feature-wise Linear Modulation. FiLM layers influence ne… (see more)ural network computation via a simple, feature-wise affine transformation based on conditioning information. We show that FiLM layers are highly effective for visual reasoning - answering image-related questions which require a multi-step, high-level process - a task which has proven difficult for standard deep learning methods that do not explicitly model reasoning. Specifically, we show on visual reasoning tasks that FiLM layers 1) halve state-of-the-art error for the CLEVR benchmark, 2) modulate features in a coherent manner, 3) are robust to ablations and architectural modifications, and 4) generalize well to challenging, new data from few examples or even zero-shot.