Portrait of Raymond Li is unavailable

Raymond Li

Alumni

Publications

Evaluating Numeracy of Language Models as a Natural Language Inference Task.
Rahmad Mahendra
Damiano Spina
Lawrence Cavedon
Karin Verspoor
Zhangir Azerbayev
Hailey Schoelkopf
Keiran Paster
Marco Dos Santos
Stephen Marcus McAleer
Al-bert Q. Jiang
Jia Deng
Stella Biderman
Sean Welleck. 2024
Llemma
Taylor Berg-Kirkpatrick
Daniel Spokoyny. 2020
Samuel R. Bowman
Gabor Angeli
Christopher Potts
Christopher D. Manning. 2015 … (see 480 more)
Tom Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
Prafulla Dhariwal
Arvind Neelakantan
Pranav Shyam
Girish Sastry
Amanda Askell
Sandhini Agarwal
Ariel Herbert-Voss
Gretchen Krueger
T. Henighan
Rewon Child
Aditya Ramesh
Daniel M. Ziegler
Jeffrey Wu
Clemens Winter
Chris Hesse
Mark Chen
Eric Sigler
Ma-teusz Litwin
Scott Gray
Benjamin Chess
J. Clark
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei. 2020
Samuel Cahyawijaya
Holy Lovenia
Alham Fikri Aji
Genta Indra Winata
Bryan Wilie
Fajri Koto
Christian Wibisono
Ade Romadhony
Karissa Vincentio
Jennifer Santoso
David Moel-jadi
Cahya Wirawan
Frederikus Hudi
Muham-mad Satrio Wicaksono
Ivan Halim Parmonangan
Ika Al-fina
Ilham Firdausi Putra
Samsul Rahmadani
Yulianti Oenang
Ali Akbar Septiandri
James Jaya
Kaustubh Dhole
Arie Suryani
Rifki Afina
Dan Putri
Keith Su
Made Nindyatama Stevens
Muhammad Nityasya
Ryan Adilazuarda
R. Hadiwijaya
Diandaru Tiezheng
Vito Yu
Wenliang Ghifari
Yan Dai
Xu Dyah
Haryo Damapuspita
Cuk Wibowo
Ich-wanul Tho
Karo Karo
T. Fatyanosa
Ziwei Ji
Graham Neubig
Timothy Baldwin
Zheng Cai
Maosong Cao
Haojiong Chen
Kai Chen
Keyu Chen
Xin Chen
Xun Chen
Ze-yu Chen
Zhi Chen
Pei Chu
Xiaoyi Dong
Haodong Duan
Qi Fan
Zhaoye Fei
Yan Gao
Jiaye Ge
Chenya Gu
Yuzhe Gu
Tao Gui
Aijia Guo
Qipeng Guo
Conghui He
Yingfan Hu
Ting Huang
T. Jiang
Penglong Jiao
Hongwei Liu
Jiangning Liu
Jiawei Hong
Kaiwen Liu
Kuikun Liu
Xiaoran Liu
Chen Lv
Haijun Lv
Kai Lv 0001
Li Ma
Runyuan Ma
Zerun Ma
Wenchang Ning
Linke Ouyang
Jiantao Qiu
Yuan Qu
Fukai Shang
Yunfan Shao
Hyung Won
Le Hou
Shayne Longpre
Barret Zoph
Yi Tay
William Fedus
Yunxuan Li
Xuezhi Wang
Mostafa Dehghani
Siddhartha Brahma
Alex Webson
Shixiang Shane
Zhuyun Gu
Menghua Dai
Xinyun Suzgun
Aakanksha Chen
Alex Chowdhery
Marie Castro-Ros
Kevin Pellat
Dasha Robinson
Sharan Valter
Gaurav Narang
Adams Mishra
Y. YuVincent
Yanping Zhao
Andrew Huang
Dai
Kevin Clark
Minh-Thang Luong
Quoc V. Le
Christopher D. Manning. 2020
Electra
Karl Cobbe
Vineet Kosaraju
Mo Bavarian
Heewoo Jun
Lukasz Kaiser
Matthias Plappert
Jerry Tworek
Jacob Hilton
Reiichiro Nakano
Xiao Bi
Deli Chen
Guanting Chen
Shanhuang Chen
Damai Dai
Cheng Deng
Honghui Ding
Kai Dong
Qiushi Du
Zhe Fu
Huazuo Gao
Kaige Gao
Wenjun Gao
Ruiqi Ge
Kang Guan
Daya Guo
Jianzhong Guo
Guangbo Hao
Zhewen Hao
Ying He
Panpan Wenjie Hu
Didem Foss
Dingkang Wang
Duc Le
Dustin Hol-land
Edward Dowling
Eissa Jamil
Elaine Mont-gomery
Eleonora Presani
Emily Hahn
Emily Wood
Erik Brinkman
Esteban Arcaute
Evan Dunbar
Evan Smothers
Fei Sun
Felix Kreuk
Feng Tian
Firat Ozgenel
Francesco Caggioni
F. Guzm’an
Frank J. Kanayet
Frank Seide
Gabriela Medina Florez
Gabriella Schwarz
Gada Badeer
Georgia Swee
Gil Halpern
G. Thattai
Grant Herman
G. Sizov
Guangyi Zhang
Guna Lakshmi-narayanan
Hamid Shojanazeri
Han Zou
Hannah Wang
Han Zha
Haroun Habeeb
Harrison Rudolph
Helen Suk
Henry Aspegren
Hunter Goldman
Igor Molybog
Igor Tufanov
Irina-Elena Veliche
Itai Gat
Jake Weissman
James Geboski
James Kohli
Japhet Asher
Jean-Baptiste Gaya
Jeff Marcus
Jeff Tang
Jennifer Chan
Jenny Zhen
Jeremy Reizen-stein
J. Teboul
Jessica Zhong
Jian Jin
Jingyi Yang
Joe Cummings
Jon Carvill
Jon Shepard
J. McPhie
Jonathan Torres
Josh Ginsburg
Junjie Wang
Kai Wu
U. KamHou
Karan Saxena
Karthik Prasad
Kartikay Khandelwal
Katayoun Zand
Kathy Matosich
Kaushik Veeraragha-van
Kelly Michelena
Keqian Li
Kun Huang
Kushal Chawla
Kushal Lakhotia
Kyle Huang
Lailin Chen
Lakshya Garg
A. Lavender
Leandro Silva
Lee Bell
Lei Zhang
Liangpeng Guo
Licheng Yu
Liron Moshkovich
Luca Wehrstedt
Madian Khabsa
Manav Avalani
Manish Bhatt
Maria Tsim-poukelli
Martynas Mankus
Matan Hasson
Matthias Lennie
Matthias Reso
Maxim Groshev
Maxim Naumov
Maya Lathi
Meghan Keneally
Michal Seltzer
Michal Valko
Michelle Restrepo
Mihir Patel
Mik Vyatskov
Mikayel Samvelyan
Mike Clark
Mike Macey
Mike Wang
Miquel Jubert
Mo Metanat
Mohammad Rastegari
Munish Bansal
Nandhini Santhanam
Natascha Parks
Natasha White
Navyata Bawa
Nayan Singhal
Nick Egebo
Nicolas Usunier
Nikolay Pavlovich
Laptev Ning
Ning Dong
Norman Zhang
Oleg Cheng
Olivia Chernoguz
Omkar Hart
Ozlem Salpekar
Parkin Kalinli
Parth Kent
Paul Parekh
Pa-van Saab
Pedro Balaji
Philip Rittner
Pierre Bontrager
Piotr Roux
Polina Dollár
P. Zvyagina
Pritish Yuvraj
Qian Liang
Rachad Alao
Rachel Rodriguez
Rafi Ayub
Raghotham Murthy
Raghu Nayani
Rahul Mitra
Rebekkah Hogan
Robin Battey
Rocky Wang
Rohan Mah-eswari
Russell Howes
Ruty Rinott
Sai Jayesh
Bondu Samyak
Sara Datta
Sara Chugh
Sargun Hunt
Sasha Dhillon
Satadru Sidorov
Saurabh Pan
Verma Seiji
Sharadh Yamamoto
Shaun Ramaswamy
Sheng Lind-say
Sheng Feng
Shengxin Cindy Lin
Shiva Zha
Shuqiang Shankar
Sinong Zhang
Wang Sneha
Soji Agarwal
Soumith Sajuyigbe
Chintala Stephanie
Stephen Max
Steve Chen
Steve Kehoe
Sudarshan Satterfield
S. Govindaprasad
Gupta Sung-Bae
Sunny Cho
Suraj Virk
Subramanian Sy
Sy Choudhury
Tal Goldman
T. Remez
Tamara Glaser
Thilo Best
Thomas Kohler
Tianhe Robinson
Tianjun Li
Tim Zhang
Tim Matthews
Tzook Chou
Varun Shaked
Victoria Vontimitta
Victoria Ajayi
Vijai Montanez
Vinay Satish Mohan
Vishal Kumar
Vlad Mangla
Ionescu
Vlad Andrei
V. Poenaru
Vlad T. Mihailescu
Wei Ivanov
Wenchen Li
Wen-wen Wang
Wes Jiang
Bouaziz
Yilin Zhang
Yossi Adi
Youngjin Nam
Yu Wang
Yuchen Hao
Yundi Qian
Yuzi He
Zach Rait
Zachary DeVito
Zef Rosnbrick
Zhaoduo Wen
Zhenyu Yang
Zhiwei Zhao. 2024
The Llama
Gemma Team
Cassidy Hardin
Robert Dadashi
Surya Bhupatiraju
Shreya Pathak
L. Sifre
Morgane Rivière
Mihir Kale
Pouya Christo-pher Love
Dehghani Tafti
L'eonard Hussenot
Aakanksha Chowdhery
Adam Roberts
Aditya Barua
Alex Botev
Alex Castro-Ros
Ambrose Slone
Amélie Héliou
A. Tacchetti
Anna Bulanova
Antonia Paterson
Beth Tsai
Bobak Shahriari
Le Lan
Christopher A. Choquette-Choo
Clé-ment Crepy
Daniel Matthew Cer
Daphne Ippolito
David Reid
Elena Buchatskaya
Eric Ni
Eric Noland
Geng Yan
George Tucker
George-Christian Muraru
Grigory Rozhdestvenskiy
Henryk Michalewski
Ian Ten-ney
Ivan Grishchenko
Jacob Austin
James Keel-ing
Jane Labanowski
Jean-Baptiste Lespiau
Jeff Stanway
Jenny Brennan
Jeremy Chen
Johan Fer-ret
Justin Chiu
Justin Mao-jones
Kather-ine Lee
Kathy Yu
Katie Millican
Lars Lowe Sjoesund
Lisa Lee
Lucas Dixon
Machel Reid
Maciej Mikuła
Mateo Wirth
Michael Sharman
Nikolai Chinaev
Nithum Thain
Olivier Bachem
Oscar Chang
O. Wahltinez
Paige Bailey
Paul Michel
Petko Yotov Pier
Giuseppe Sessa
Rahma Chaabouni
Ramona Comanescu
Reena Jana
Rohan Anil
Evaluating Numeracy of Language Models as a Natural Language Inference Task
Rahmad Mahendra
Damiano Spina
Lawrence Cavedon
Karin Verspoor
Zhangir Azerbayev
Hailey Schoelkopf
Keiran Paster
Marco Dos Santos
Stephen Marcus McAleer
Al-bert Q. Jiang
Jia Deng
Stella Biderman
Sean Welleck. 2024
Llemma
Taylor Berg-Kirkpatrick
Daniel Spokoyny. 2020
Samuel R. Bowman
Gabor Angeli
Christopher Potts
Christopher D. Manning. 2015 … (see 480 more)
Tom Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
Prafulla Dhariwal
Arvind Neelakantan
Pranav Shyam
Girish Sastry
Amanda Askell
Sandhini Agarwal
Ariel Herbert-Voss
Gretchen Krueger
T. Henighan
Rewon Child
Aditya Ramesh
Daniel M. Ziegler
Jeffrey Wu
Clemens Winter
Chris Hesse
Mark Chen
Eric Sigler
Ma-teusz Litwin
Scott Gray
Benjamin Chess
J. Clark
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei. 2020
Samuel Cahyawijaya
Holy Lovenia
Alham Fikri Aji
Genta Indra Winata
Bryan Wilie
Fajri Koto
Christian Wibisono
Ade Romadhony
Karissa Vincentio
Jennifer Santoso
David Moel-jadi
Cahya Wirawan
Frederikus Hudi
Muham-mad Satrio Wicaksono
Ivan Halim Parmonangan
Ika Al-fina
Ilham Firdausi Putra
Samsul Rahmadani
Yulianti Oenang
Ali Akbar Septiandri
James Jaya
Kaustubh Dhole
Arie Suryani
Rifki Afina
Dan Putri
Keith Su
Made Nindyatama Stevens
Muhammad Nityasya
Ryan Adilazuarda
R. Hadiwijaya
Diandaru Tiezheng
Vito Yu
Wenliang Ghifari
Yan Dai
Xu Dyah
Haryo Damapuspita
Cuk Wibowo
Ich-wanul Tho
Karo Karo
T. Fatyanosa
Ziwei Ji
Graham Neubig
Timothy Baldwin
Zheng Cai
Maosong Cao
Haojiong Chen
Kai Chen
Keyu Chen
Xin Chen
Xun Chen
Ze-yu Chen
Zhi Chen
Pei Chu
Xiaoyi Dong
Haodong Duan
Qi Fan
Zhaoye Fei
Yan Gao
Jiaye Ge
Chenya Gu
Yuzhe Gu
Tao Gui
Aijia Guo
Qipeng Guo
Conghui He
Yingfan Hu
Ting Huang
T. Jiang
Penglong Jiao
Hongwei Liu
Jiangning Liu
Jiawei Hong
Kaiwen Liu
Kuikun Liu
Xiaoran Liu
Chen Lv
Haijun Lv
Kai Lv 0001
Li Ma
Runyuan Ma
Zerun Ma
Wenchang Ning
Linke Ouyang
Jiantao Qiu
Yuan Qu
Fukai Shang
Yunfan Shao
Hyung Won
Le Hou
Shayne Longpre
Barret Zoph
Yi Tay
William Fedus
Yunxuan Li
Xuezhi Wang
Mostafa Dehghani
Siddhartha Brahma
Alex Webson
Shixiang Shane
Zhuyun Gu
Menghua Dai
Xinyun Suzgun
Aakanksha Chen
Alex Chowdhery
Marie Castro-Ros
Kevin Pellat
Dasha Robinson
Sharan Valter
Gaurav Narang
Adams Mishra
Y. YuVincent
Yanping Zhao
Andrew Huang
Dai
Kevin Clark
Minh-Thang Luong
Quoc V. Le
Christopher D. Manning. 2020
Electra
Karl Cobbe
Vineet Kosaraju
Mo Bavarian
Heewoo Jun
Lukasz Kaiser
Matthias Plappert
Jerry Tworek
Jacob Hilton
Reiichiro Nakano
Xiao Bi
Deli Chen
Guanting Chen
Shanhuang Chen
Damai Dai
Cheng Deng
Honghui Ding
Kai Dong
Qiushi Du
Zhe Fu
Huazuo Gao
Kaige Gao
Wenjun Gao
Ruiqi Ge
Kang Guan
Daya Guo
Jianzhong Guo
Guangbo Hao
Zhewen Hao
Ying He
Panpan Wenjie Hu
Didem Foss
Dingkang Wang
Duc Le
Dustin Hol-land
Edward Dowling
Eissa Jamil
Elaine Mont-gomery
Eleonora Presani
Emily Hahn
Emily Wood
Erik Brinkman
Esteban Arcaute
Evan Dunbar
Evan Smothers
Fei Sun
Felix Kreuk
Feng Tian
Firat Ozgenel
Francesco Caggioni
F. Guzm’an
Frank J. Kanayet
Frank Seide
Gabriela Medina Florez
Gabriella Schwarz
Gada Badeer
Georgia Swee
Gil Halpern
G. Thattai
Grant Herman
G. Sizov
Guangyi Zhang
Guna Lakshmi-narayanan
Hamid Shojanazeri
Han Zou
Hannah Wang
Han Zha
Haroun Habeeb
Harrison Rudolph
Helen Suk
Henry Aspegren
Hunter Goldman
Igor Molybog
Igor Tufanov
Irina-Elena Veliche
Itai Gat
Jake Weissman
James Geboski
James Kohli
Japhet Asher
Jean-Baptiste Gaya
Jeff Marcus
Jeff Tang
Jennifer Chan
Jenny Zhen
Jeremy Reizen-stein
J. Teboul
Jessica Zhong
Jian Jin
Jingyi Yang
Joe Cummings
Jon Carvill
Jon Shepard
J. McPhie
Jonathan Torres
Josh Ginsburg
Junjie Wang
Kai Wu
U. KamHou
Karan Saxena
Karthik Prasad
Kartikay Khandelwal
Katayoun Zand
Kathy Matosich
Kaushik Veeraragha-van
Kelly Michelena
Keqian Li
Kun Huang
Kushal Chawla
Kushal Lakhotia
Kyle Huang
Lailin Chen
Lakshya Garg
A. Lavender
Leandro Silva
Lee Bell
Lei Zhang
Liangpeng Guo
Licheng Yu
Liron Moshkovich
Luca Wehrstedt
Madian Khabsa
Manav Avalani
Manish Bhatt
Maria Tsim-poukelli
Martynas Mankus
Matan Hasson
Matthias Lennie
Matthias Reso
Maxim Groshev
Maxim Naumov
Maya Lathi
Meghan Keneally
Michal Seltzer
Michal Valko
Michelle Restrepo
Mihir Patel
Mik Vyatskov
Mikayel Samvelyan
Mike Clark
Mike Macey
Mike Wang
Miquel Jubert
Mo Metanat
Mohammad Rastegari
Munish Bansal
Nandhini Santhanam
Natascha Parks
Natasha White
Navyata Bawa
Nayan Singhal
Nick Egebo
Nicolas Usunier
Nikolay Pavlovich
Laptev Ning
Ning Dong
Norman Zhang
Oleg Cheng
Olivia Chernoguz
Omkar Hart
Ozlem Salpekar
Parkin Kalinli
Parth Kent
Paul Parekh
Pa-van Saab
Pedro Balaji
Philip Rittner
Pierre Bontrager
Piotr Roux
Polina Dollár
P. Zvyagina
Pritish Yuvraj
Qian Liang
Rachad Alao
Rachel Rodriguez
Rafi Ayub
Raghotham Murthy
Raghu Nayani
Rahul Mitra
Rebekkah Hogan
Robin Battey
Rocky Wang
Rohan Mah-eswari
Russell Howes
Ruty Rinott
Sai Jayesh
Bondu Samyak
Sara Datta
Sara Chugh
Sargun Hunt
Sasha Dhillon
Satadru Sidorov
Saurabh Pan
Verma Seiji
Sharadh Yamamoto
Shaun Ramaswamy
Sheng Lind-say
Sheng Feng
Shengxin Cindy Lin
Shiva Zha
Shuqiang Shankar
Sinong Zhang
Wang Sneha
Soji Agarwal
Soumith Sajuyigbe
Chintala Stephanie
Stephen Max
Steve Chen
Steve Kehoe
Sudarshan Satterfield
S. Govindaprasad
Gupta Sung-Bae
Sunny Cho
Suraj Virk
Subramanian Sy
Sy Choudhury
Tal Goldman
T. Remez
Tamara Glaser
Thilo Best
Thomas Kohler
Tianhe Robinson
Tianjun Li
Tim Zhang
Tim Matthews
Tzook Chou
Varun Shaked
Victoria Vontimitta
Victoria Ajayi
Vijai Montanez
Vinay Satish Mohan
Vishal Kumar
Vlad Mangla
Ionescu
Vlad Andrei
V. Poenaru
Vlad T. Mihailescu
Wei Ivanov
Wenchen Li
Wen-wen Wang
Wes Jiang
Bouaziz
Yilin Zhang
Yossi Adi
Youngjin Nam
Yu Wang
Yuchen Hao
Yundi Qian
Yuzi He
Zach Rait
Zachary DeVito
Zef Rosnbrick
Zhaoduo Wen
Zhenyu Yang
Zhiwei Zhao. 2024
The Llama
Gemma Team
Cassidy Hardin
Robert Dadashi
Surya Bhupatiraju
Shreya Pathak
L. Sifre
Morgane Rivière
Mihir Kale
Pouya Christo-pher Love
Dehghani Tafti
L'eonard Hussenot
Aakanksha Chowdhery
Adam Roberts
Aditya Barua
Alex Botev
Alex Castro-Ros
Ambrose Slone
Amélie Héliou
A. Tacchetti
Anna Bulanova
Antonia Paterson
Beth Tsai
Bobak Shahriari
Le Lan
Christopher A. Choquette-Choo
Clé-ment Crepy
Daniel Matthew Cer
Daphne Ippolito
David Reid
Elena Buchatskaya
Eric Ni
Eric Noland
Geng Yan
George Tucker
George-Christian Muraru
Grigory Rozhdestvenskiy
Henryk Michalewski
Ian Ten-ney
Ivan Grishchenko
Jacob Austin
James Keel-ing
Jane Labanowski
Jean-Baptiste Lespiau
Jeff Stanway
Jenny Brennan
Jeremy Chen
Johan Fer-ret
Justin Chiu
Justin Mao-jones
Kather-ine Lee
Kathy Yu
Katie Millican
Lars Lowe Sjoesund
Lisa Lee
Lucas Dixon
Machel Reid
Maciej Mikuła
Mateo Wirth
Michael Sharman
Nikolai Chinaev
Nithum Thain
Olivier Bachem
Oscar Chang
O. Wahltinez
Paige Bailey
Paul Michel
Petko Yotov Pier
Giuseppe Sessa
Rahma Chaabouni
Ramona Comanescu
Reena Jana
Rohan Anil
While recent advancements in large language models (LLMs) have enhanced their capabilities to solve mathematical problems, other aspects of … (see more)numeracy remain underexplored. In this paper, we propose a benchmark to evaluate the ability of language models to perform basic numeracy tasks. We frame numeracy as a Natural Language Inference (NLI) task to assess the models’ ability to understand both numbers and language contexts. We evaluate 49 language models (LMs), including fine-tuned LMs on NLI datasets, instruction-tuned LLMs, and specialized math-LLMs. Our findings reveal three main insights: (1) LLMs only clearly outperform smaller LMs in arithmetic tasks, indicating that mathematical reasoning cannot be generalized to other numeracy skills such as number comparison and normalization; (2) while most language models achieve fair to good accuracy for NLI entailment cases, they still struggle to predict contradiction and neutral cases; and (3) the robustness of language models’ numeracy capabilities needs improvement, particularly in understanding the semantics and pragmatics of numbers in linguistic contexts.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder 2 and The Stack v2: The Next Generation
Anton Lozhkov
Loubna Ben allal
Federico Cassano
Joel Lamy-Poirier
Nouamane Tazi
Ao Tang
Dmytro Pykhtar
Jiawei Liu
Yuxiang Wei
Tianyang Liu
Max Tian
Denis Kocetkov
Arthur Zucker
Younes Belkada
Zijian Wang
Qian Liu
Dmitry Abulkhanov
Indraneil Paul
Zhuang Li … (see 46 more)
Wen-Ding Li
Megan L. Risdal
Jia LI
Jian Zhu
Terry Yue Zhuo
Evgenii Zheltonozhskii
Nii Osae Osae Dade
Wenhao Yu
Lucas Krauss
Naman Jain
Yixuan Su
Xuanli He
Edoardo Abati
Yekun Chai
Niklas Muennighoff
Xiangru Tang
Muhtasham Oblokulov
Christopher Akiki
Marc Marone
Chenghao Mou
Mayank Mishra
Alex Gu
Binyuan Hui
Tri Dao
Armel Zebaze
Olivier Dehaene
Nicolas Patry
Canwen Xu
Julian McAuley
Han Hu
Torsten Scholak
Sebastien Paquet
Jennifer Robinson
Carolyn Jane Anderson
Md. Mostofa Ali Patwary
Nima Tajbakhsh
Yacine Jernite
Carlos Muñoz Ferrandis
Lingming Zhang
Sean Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), … (see more)introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
StarCoder: may the source be with you!
Loubna Ben allal
Yangtian Zi
Niklas Muennighoff
Denis Kocetkov
Chenghao Mou
Marc Marone
Christopher Akiki
Jia LI
Jenny Chim
Qian Liu
Evgenii Zheltonozhskii
Terry Yue Zhuo
Thomas Wang
Olivier Dehaene
Mishig Davaadorj
Joel Lamy-Poirier
Joao Monteiro
Oleh Shliazhko
Nicolas Gontier … (see 49 more)
Armel Zebaze
Ming-Ho Yee
Logesh Kumar Umapathi
Jian Zhu
Ben Lipkin
Muhtasham Oblokulov
Zhiruo Wang
Rudra Murthy
Jason T Stillerman
Siva Sankalp Patel
Dmitry Abulkhanov
Marco Zocca
Zhihan Zhang
N. Fahmy
Urvashi Bhattacharyya
Wenhao Yu
Swayam Singh
Paulo Villegas
M. Kunakov
Jan Ebert
Fedor Zhdanov
Manuel Romero
Tony Lee
Nadav Timor
Jennifer Ding
Claire S Schlesinger
Hailey Schoelkopf
Jana Ebert
Tri Dao
Mayank Mishra
Alex Gu
Jennifer Robinson
Sean Hughes
Carolyn Jane Anderson
Brendan Dolan-Gavitt
Danish Contractor
Daniel Fried
Yacine Jernite
Carlos Muñoz Ferrandis
Sean M. Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
The BigCode community, an open-scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs)… (see more), introduces StarCoder and StarCoderBase: 15.5B parameter models with 8K context length, infilling capabilities and fast large-batch inference enabled by multi-query attention. StarCoderBase is trained on 1 trillion tokens sourced from The Stack, a large collection of permissively licensed GitHub repositories with inspection tools and an opt-out process. We fine-tuned StarCoderBase on 35B Python tokens, resulting in the creation of StarCoder. We perform the most comprehensive evaluation of Code LLMs to date and show that StarCoderBase outperforms every open Code LLM that supports multiple programming languages and matches or outperforms the OpenAI code-cushman-001 model. Furthermore, StarCoder outperforms every model that is fine-tuned on Python and still retains its performance on other programming languages. We take several important steps towards a safe open-access model release, including an improved PII redaction pipeline and a novel attribution tracing tool, and make the StarCoder models publicly available under a more commercially viable version of the Open Responsible AI Model license.