Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
The rapid evolution of software libraries poses a considerable hurdle for code generation, necessitating continuous adaptation to frequent v… (see more)ersion updates while preserving backward compatibility. While existing code evolution benchmarks provide valuable insights, they typically lack execution-based evaluation for generating code compliant with specific library versions. To address this, we introduce GitChameleon, a novel, meticulously curated dataset comprising 328 Python code completion problems, each conditioned on specific library versions and accompanied by executable unit tests. GitChameleon rigorously evaluates the capacity of contemporary large language models (LLMs), LLM-powered agents, code assistants, and RAG systems to perform version-conditioned code generation that demonstrates functional accuracy through execution. Our extensive evaluations indicate that state-of-the-art systems encounter significant challenges with this task; enterprise models achieving baseline success rates in the 48-51\% range, underscoring the intricacy of the problem. By offering an execution-based benchmark emphasizing the dynamic nature of code libraries, GitChameleon enables a clearer understanding of this challenge and helps guide the development of more adaptable and dependable AI code generation methods. We make the dataset and evaluation code publicly available at https://github.com/mrcabbage972/GitChameleonBenchmark.
The rapid evolution of software libraries poses a considerable hurdle for code generation, necessitating continuous adaptation to frequent v… (see more)ersion updates while preserving backward compatibility. While existing code evolution benchmarks provide valuable insights, they typically lack execution-based evaluation for generating code compliant with specific library versions. To address this, we introduce GitChameleon, a novel, meticulously curated dataset comprising 328 Python code completion problems, each conditioned on specific library versions and accompanied by executable unit tests. GitChameleon rigorously evaluates the capacity of contemporary large language models (LLMs), LLM-powered agents, code assistants, and RAG systems to perform version-conditioned code generation that demonstrates functional accuracy through execution. Our extensive evaluations indicate that state-of-the-art systems encounter significant challenges with this task; enterprise models achieving baseline success rates in the 48-51\% range, underscoring the intricacy of the problem. By offering an execution-based benchmark emphasizing the dynamic nature of code libraries, GitChameleon enables a clearer understanding of this challenge and helps guide the development of more adaptable and dependable AI code generation methods. We make the dataset and evaluation code publicly available at https://github.com/mrcabbage972/GitChameleonBenchmark.
The rapid evolution of software libraries poses a considerable hurdle for code generation, necessitating continuous adaptation to frequent v… (see more)ersion updates while preserving backward compatibility. While existing code evolution benchmarks provide valuable insights, they typically lack execution-based evaluation for generating code compliant with specific library versions. To address this, we introduce GitChameleon 2.0, a novel, meticulously curated dataset comprising 328 Python code completion problems, each conditioned on specific library versions and accompanied by executable unit tests. GitChameleon 2.0 rigorously evaluates the capacity of contemporary large language models (LLMs), LLM-powered agents, code assistants, and RAG systems to perform version-conditioned code generation that demonstrates functional accuracy through execution. Our extensive evaluations indicate that state-of-the-art systems encounter significant challenges with this task; enterprise models achieving baseline success rates in the 48-51% range, underscoring the intricacy of the problem. By offering an execution-based benchmark emphasizing the dynamic nature of code libraries, GitChameleon 2.0 enables a clearer understanding of this challenge and helps guide the development of more adaptable and dependable AI code generation methods. We make the dataset and evaluation code publicly available at https://github.com/mrcabbage972/GitChameleonBenchmark.
Ultrasound Localization Microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with … (see more)resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature of different tissues. Various deep-learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubbles distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.
2024-09-17
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control (published)
Ultrasound localization microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with … (see more)resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature. Several deep learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity, or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubble distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by the deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.
2024-09-17
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control (published)
Ultrasound Localization Microscopy (ULM) is a non-invasive technique that allows for the imaging of micro-vessels in vivo, at depth and with… (see more) a resolution on the order of ten microns. ULM is based on the sub-resolution localization of individual microbubbles injected in the bloodstream. Mapping the whole angioarchitecture requires the accumulation of microbubbles trajectories from thousands of frames, typically acquired over a few minutes. ULM acquisition times can be reduced by increasing the microbubble concentration, but requires more advanced algorithms to detect them individually. Several deep learning approaches have been proposed for this task, but they remain limited to 2D imaging, in part due to the associated large memory requirements. Herein, we propose to use sparse tensor neural networks to reduce memory usage in 2D and to improve the scaling of the memory requirement for the extension of deep learning architecture to 3D. We study several approaches to efficiently convert ultrasound data into a sparse format and study the impact of the associated loss of information. When applied in 2D, the sparse formulation reduces the memory requirements by a factor 2 at the cost of a small reduction of performance when compared against dense networks. In 3D, the proposed approach reduces memory requirements by two order of magnitude while largely outperforming conventional ULM in high concentration settings. We show that Sparse Tensor Neural Networks in 3D ULM allow for the same benefits as dense deep learning based method in 2D ULM i.e. the use of higher concentration in silico and reduced acquisition time.